Gaussian binomial coefficient

Family of polynomials

In mathematics, the Gaussian binomial coefficients (also called Gaussian coefficients, Gaussian polynomials, or q-binomial coefficients) are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as ( n k ) q {\displaystyle {\binom {n}{k}}_{q}} or [ n k ] q {\displaystyle {\begin{bmatrix}n\\k\end{bmatrix}}_{q}} , is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over F q {\displaystyle \mathbb {F} _{q}} , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian G r ( k , F q n ) {\displaystyle \mathrm {Gr} (k,\mathbb {F} _{q}^{n})} .

Definition

The Gaussian binomial coefficients are defined by:[1]

( m r ) q = ( 1 q m ) ( 1 q m 1 ) ( 1 q m r + 1 ) ( 1 q ) ( 1 q 2 ) ( 1 q r ) {\displaystyle {m \choose r}_{q}={\frac {(1-q^{m})(1-q^{m-1})\cdots (1-q^{m-r+1})}{(1-q)(1-q^{2})\cdots (1-q^{r})}}}

where m and r are non-negative integers. If r > m, this evaluates to 0. For r = 0, the value is 1 since both the numerator and denominator are empty products.

Although the formula at first appears to be a rational function, it actually is a polynomial, because the division is exact in Z[q]

All of the factors in numerator and denominator are divisible by 1 − q, and the quotient is the q-number:

[ k ] q = 0 i < k q i = 1 + q + q 2 + + q k 1 = { 1 q k 1 q for q 1 k for q = 1 , {\displaystyle [k]_{q}=\sum _{0\leq i<k}q^{i}=1+q+q^{2}+\cdots +q^{k-1}={\begin{cases}{\frac {1-q^{k}}{1-q}}&{\text{for}}&q\neq 1\\k&{\text{for}}&q=1\end{cases}},}

Dividing out these factors gives the equivalent formula

( m r ) q = [ m ] q [ m 1 ] q [ m r + 1 ] q [ 1 ] q [ 2 ] q [ r ] q ( r m ) . {\displaystyle {m \choose r}_{q}={\frac {[m]_{q}[m-1]_{q}\cdots [m-r+1]_{q}}{[1]_{q}[2]_{q}\cdots [r]_{q}}}\quad (r\leq m).}

In terms of the q factorial [ n ] q ! = [ 1 ] q [ 2 ] q [ n ] q {\displaystyle [n]_{q}!=[1]_{q}[2]_{q}\cdots [n]_{q}} , the formula can be stated as

( m r ) q = [ m ] q ! [ r ] q ! [ m r ] q ! ( r m ) . {\displaystyle {m \choose r}_{q}={\frac {[m]_{q}!}{[r]_{q}!\,[m-r]_{q}!}}\quad (r\leq m).}

Substituting q = 1 into ( m r ) q {\displaystyle {\tbinom {m}{r}}_{q}} gives the ordinary binomial coefficient ( m r ) {\displaystyle {\tbinom {m}{r}}} .

The Gaussian binomial coefficient has finite values as m {\displaystyle m\rightarrow \infty } :

( r ) q = lim m ( m r ) q = 1 ( 1 q ) ( 1 q 2 ) ( 1 q r ) = 1 [ r ] q ! ( 1 q ) r {\displaystyle {\infty \choose r}_{q}=\lim _{m\rightarrow \infty }{m \choose r}_{q}={\frac {1}{(1-q)(1-q^{2})\cdots (1-q^{r})}}={\frac {1}{[r]_{q}!\,(1-q)^{r}}}}

Examples

( 0 0 ) q = ( 1 0 ) q = 1 {\displaystyle {0 \choose 0}_{q}={1 \choose 0}_{q}=1}
( 1 1 ) q = 1 q 1 q = 1 {\displaystyle {1 \choose 1}_{q}={\frac {1-q}{1-q}}=1}
( 2 1 ) q = 1 q 2 1 q = 1 + q {\displaystyle {2 \choose 1}_{q}={\frac {1-q^{2}}{1-q}}=1+q}
( 3 1 ) q = 1 q 3 1 q = 1 + q + q 2 {\displaystyle {3 \choose 1}_{q}={\frac {1-q^{3}}{1-q}}=1+q+q^{2}}
( 3 2 ) q = ( 1 q 3 ) ( 1 q 2 ) ( 1 q ) ( 1 q 2 ) = 1 + q + q 2 {\displaystyle {3 \choose 2}_{q}={\frac {(1-q^{3})(1-q^{2})}{(1-q)(1-q^{2})}}=1+q+q^{2}}
( 4 2 ) q = ( 1 q 4 ) ( 1 q 3 ) ( 1 q ) ( 1 q 2 ) = ( 1 + q 2 ) ( 1 + q + q 2 ) = 1 + q + 2 q 2 + q 3 + q 4 {\displaystyle {4 \choose 2}_{q}={\frac {(1-q^{4})(1-q^{3})}{(1-q)(1-q^{2})}}=(1+q^{2})(1+q+q^{2})=1+q+2q^{2}+q^{3}+q^{4}}
( 6 3 ) q = ( 1 q 6 ) ( 1 q 5 ) ( 1 q 4 ) ( 1 q ) ( 1 q 2 ) ( 1 q 3 ) = ( 1 + q 2 ) ( 1 + q 3 ) ( 1 + q + q 2 + q 3 + q 4 ) = 1 + q + 2 q 2 + 3 q 3 + 3 q 4 + 3 q 5 + 3 q 6 + 2 q 7 + q 8 + q 9 {\displaystyle {6 \choose 3}_{q}={\frac {(1-q^{6})(1-q^{5})(1-q^{4})}{(1-q)(1-q^{2})(1-q^{3})}}=(1+q^{2})(1+q^{3})(1+q+q^{2}+q^{3}+q^{4})=1+q+2q^{2}+3q^{3}+3q^{4}+3q^{5}+3q^{6}+2q^{7}+q^{8}+q^{9}}

Combinatorial descriptions

Inversions

One combinatorial description of Gaussian binomial coefficients involves inversions.

The ordinary binomial coefficient ( m r ) {\displaystyle {\tbinom {m}{r}}} counts the r-combinations chosen from an m-element set. If one takes those m elements to be the different character positions in a word of length m, then each r-combination corresponds to a word of length m using an alphabet of two letters, say {0,1}, with r copies of the letter 1 (indicating the positions in the chosen combination) and mr letters 0 (for the remaining positions).

So, for example, the ( 4 2 ) = 6 {\displaystyle {4 \choose 2}=6} words using 0s and 1s are 0011 , 0101 , 0110 , 1001 , 1010 , 1100 {\displaystyle 0011,0101,0110,1001,1010,1100} .

To obtain the Gaussian binomial coefficient ( m r ) q {\displaystyle {\tbinom {m}{r}}_{q}} , each word is associated with a factor qd, where d is the number of inversions of the word, where, in this case, an inversion is a pair of positions where the left of the pair holds the letter 1 and the right position holds the letter 0.

With the example above, there is one word with 0 inversions, 0011 {\displaystyle 0011} , one word with 1 inversion, 0101 {\displaystyle 0101} , two words with 2 inversions, 0110 {\displaystyle 0110} , 1001 {\displaystyle 1001} , one word with 3 inversions, 1010 {\displaystyle 1010} , and one word with 4 inversions, 1100 {\displaystyle 1100} . This is also the number of left-shifts of the 1s from the initial position.

These correspond to the coefficients in ( 4 2 ) q = 1 + q + 2 q 2 + q 3 + q 4 {\displaystyle {4 \choose 2}_{q}=1+q+2q^{2}+q^{3}+q^{4}} .

Another way to see this is to associate each word with a path across a rectangular grid with height r and width mr, going from the bottom left corner to the top right corner. The path takes a step right for each 0 and a step up for each 1. An inversion switches the directions of a step (right+up becomes up+right and vice versa), hence the number of inversions equals the area under the path.

Balls into bins

Let B ( n , m , r ) {\displaystyle B(n,m,r)} be the number of ways of throwing r {\displaystyle r} indistinguishable balls into m {\displaystyle m} indistinguishable bins, where each bin can contain up to n {\displaystyle n} balls. The Gaussian binomial coefficient can be used to characterize B ( n , m , r ) {\displaystyle B(n,m,r)} . Indeed,

B ( n , m , r ) = [ q r ] ( n + m m ) q . {\displaystyle B(n,m,r)=[q^{r}]{n+m \choose m}_{q}.}

where [ q r ] P {\displaystyle [q^{r}]P} denotes the coefficient of q r {\displaystyle q^{r}} in polynomial P {\displaystyle P} (see also Applications section below).

Properties

Reflection

Like the ordinary binomial coefficients, the Gaussian binomial coefficients are center-symmetric, i.e., invariant under the reflection r m r {\displaystyle r\rightarrow m-r} :

( m r ) q = ( m m r ) q . {\displaystyle {m \choose r}_{q}={m \choose m-r}_{q}.}

In particular,

( m 0 ) q = ( m m ) q = 1 , {\displaystyle {m \choose 0}_{q}={m \choose m}_{q}=1\,,}
( m 1 ) q = ( m m 1 ) q = 1 q m 1 q = 1 + q + + q m 1 m 1 . {\displaystyle {m \choose 1}_{q}={m \choose m-1}_{q}={\frac {1-q^{m}}{1-q}}=1+q+\cdots +q^{m-1}\quad m\geq 1\,.}

Limit at q = 1

The evaluation of a Gaussian binomial coefficient at q = 1 is

lim q 1 ( m r ) q = ( m r ) {\displaystyle \lim _{q\to 1}{\binom {m}{r}}_{q}={\binom {m}{r}}}

i.e. the sum of the coefficients gives the corresponding binomial value.

Degree of polynomial

The degree of ( m r ) q {\displaystyle {\binom {m}{r}}_{q}} is ( m + 1 2 ) ( r + 1 2 ) ( ( m r ) + 1 2 ) = r ( m r ) {\displaystyle {\binom {m+1}{2}}-{\binom {r+1}{2}}-{\binom {(m-r)+1}{2}}=r(m-r)} .

q identities

Analogs of Pascal's identity

The analogs of Pascal's identity for the Gaussian binomial coefficients are:[2]

( m r ) q = q r ( m 1 r ) q + ( m 1 r 1 ) q {\displaystyle {m \choose r}_{q}=q^{r}{m-1 \choose r}_{q}+{m-1 \choose r-1}_{q}}

and

( m r ) q = ( m 1 r ) q + q m r ( m 1 r 1 ) q . {\displaystyle {m \choose r}_{q}={m-1 \choose r}_{q}+q^{m-r}{m-1 \choose r-1}_{q}.}

When q = 1 {\displaystyle q=1} , these both give the usual binomial identity. We can see that as m {\displaystyle m\to \infty } , both equations remain valid.

The first Pascal analog allows computation of the Gaussian binomial coefficients recursively (with respect to m ) using the initial values

( m m ) q = ( m 0 ) q = 1 {\displaystyle {m \choose m}_{q}={m \choose 0}_{q}=1}

and also shows that the Gaussian binomial coefficients are indeed polynomials (in q).

The second Pascal analog follows from the first using the substitution r m r {\displaystyle r\rightarrow m-r} and the invariance of the Gaussian binomial coefficients under the reflection r m r {\displaystyle r\rightarrow m-r} .

These identities have natural interpretations in terms of linear algebra. Recall that ( m r ) q {\displaystyle {\tbinom {m}{r}}_{q}} counts r-dimensional subspaces V F q m {\displaystyle V\subset \mathbb {F} _{q}^{m}} , and let π : F q m F q m 1 {\displaystyle \pi :\mathbb {F} _{q}^{m}\to \mathbb {F} _{q}^{m-1}} be a projection with one-dimensional nullspace E 1 {\displaystyle E_{1}} . The first identity comes from the bijection which takes V F q m {\displaystyle V\subset \mathbb {F} _{q}^{m}} to the subspace V = π ( V ) F q m 1 {\displaystyle V'=\pi (V)\subset \mathbb {F} _{q}^{m-1}} ; in case E 1 V {\displaystyle E_{1}\not \subset V} , the space V {\displaystyle V'} is r-dimensional, and we must also keep track of the linear function ϕ : V E 1 {\displaystyle \phi :V'\to E_{1}} whose graph is V {\displaystyle V} ; but in case E 1 V {\displaystyle E_{1}\subset V} , the space V {\displaystyle V'} is (r−1)-dimensional, and we can reconstruct V = π 1 ( V ) {\displaystyle V=\pi ^{-1}(V')} without any extra information. The second identity has a similar interpretation, taking V {\displaystyle V} to V = V E n 1 {\displaystyle V'=V\cap E_{n-1}} for an (m−1)-dimensional space E m 1 {\displaystyle E_{m-1}} , again splitting into two cases.

Proofs of the analogs

Both analogs can be proved by first noting that from the definition of ( m r ) q {\displaystyle {\tbinom {m}{r}}_{q}} , we have:

( m r ) q = 1 q m 1 q m r ( m 1 r ) q {\displaystyle {\binom {m}{r}}_{q}={\frac {1-q^{m}}{1-q^{m-r}}}{\binom {m-1}{r}}_{q}}

(1)
( m r ) q = 1 q m 1 q r ( m 1 r 1 ) q {\displaystyle {\binom {m}{r}}_{q}={\frac {1-q^{m}}{1-q^{r}}}{\binom {m-1}{r-1}}_{q}}

(2)
1 q r 1 q m r ( m 1 r ) q = ( m 1 r 1 ) q {\displaystyle {\frac {1-q^{r}}{1-q^{m-r}}}{\binom {m-1}{r}}_{q}={\binom {m-1}{r-1}}_{q}}

(3)

As

1 q m 1 q m r = 1 q r + q r q m 1 q m r = q r + 1 q r 1 q m r {\displaystyle {\frac {1-q^{m}}{1-q^{m-r}}}={\frac {1-q^{r}+q^{r}-q^{m}}{1-q^{m-r}}}=q^{r}+{\frac {1-q^{r}}{1-q^{m-r}}}}

Equation (1) becomes:

( m r ) q = q r ( m 1 r ) q + 1 q r 1 q m r ( m 1 r ) q {\displaystyle {\binom {m}{r}}_{q}=q^{r}{\binom {m-1}{r}}_{q}+{\frac {1-q^{r}}{1-q^{m-r}}}{\binom {m-1}{r}}_{q}}

and substituting equation (3) gives the first analog.

A similar process, using

1 q m 1 q r = q m r + 1 q m r 1 q r {\displaystyle {\frac {1-q^{m}}{1-q^{r}}}=q^{m-r}+{\frac {1-q^{m-r}}{1-q^{r}}}}

instead, gives the second analog.

q-binomial theorem

There is an analog of the binomial theorem for q-binomial coefficients, known as the Cauchy binomial theorem:

k = 0 n 1 ( 1 + q k t ) = k = 0 n q k ( k 1 ) / 2 ( n k ) q t k . {\displaystyle \prod _{k=0}^{n-1}(1+q^{k}t)=\sum _{k=0}^{n}q^{k(k-1)/2}{n \choose k}_{q}t^{k}.}

Like the usual binomial theorem, this formula has numerous generalizations and extensions; one such, corresponding to Newton's generalized binomial theorem for negative powers, is

k = 0 n 1 1 1 q k t = k = 0 ( n + k 1 k ) q t k . {\displaystyle \prod _{k=0}^{n-1}{\frac {1}{1-q^{k}t}}=\sum _{k=0}^{\infty }{n+k-1 \choose k}_{q}t^{k}.}

In the limit n {\displaystyle n\rightarrow \infty } , these formulas yield

k = 0 ( 1 + q k t ) = k = 0 q k ( k 1 ) / 2 t k [ k ] q ! ( 1 q ) k {\displaystyle \prod _{k=0}^{\infty }(1+q^{k}t)=\sum _{k=0}^{\infty }{\frac {q^{k(k-1)/2}t^{k}}{[k]_{q}!\,(1-q)^{k}}}}

and

k = 0 1 1 q k t = k = 0 t k [ k ] q ! ( 1 q ) k {\displaystyle \prod _{k=0}^{\infty }{\frac {1}{1-q^{k}t}}=\sum _{k=0}^{\infty }{\frac {t^{k}}{[k]_{q}!\,(1-q)^{k}}}} .

Setting t = q {\displaystyle t=q} gives the generating functions for distinct and any parts respectively. (See also Basic hypergeometric series.)

Central q-binomial identity

With the ordinary binomial coefficients, we have:

k = 0 n ( n k ) 2 = ( 2 n n ) {\displaystyle \sum _{k=0}^{n}{\binom {n}{k}}^{2}={\binom {2n}{n}}}

With q-binomial coefficients, the analog is:

k = 0 n q k 2 ( n k ) q 2 = ( 2 n n ) q {\displaystyle \sum _{k=0}^{n}q^{k^{2}}{\binom {n}{k}}_{q}^{2}={\binom {2n}{n}}_{q}}

Applications

Gauss originally used the Gaussian binomial coefficients in his determination of the sign of the quadratic Gauss sum.[3]

Gaussian binomial coefficients occur in the counting of symmetric polynomials and in the theory of partitions. The coefficient of qr in

( n + m m ) q {\displaystyle {n+m \choose m}_{q}}

is the number of partitions of r with m or fewer parts each less than or equal to n. Equivalently, it is also the number of partitions of r with n or fewer parts each less than or equal to m.

Gaussian binomial coefficients also play an important role in the enumerative theory of projective spaces defined over a finite field. In particular, for every finite field Fq with q elements, the Gaussian binomial coefficient

( n k ) q {\displaystyle {n \choose k}_{q}}

counts the number of k-dimensional vector subspaces of an n-dimensional vector space over Fq (a Grassmannian). When expanded as a polynomial in q, it yields the well-known decomposition of the Grassmannian into Schubert cells. For example, the Gaussian binomial coefficient

( n 1 ) q = 1 + q + q 2 + + q n 1 {\displaystyle {n \choose 1}_{q}=1+q+q^{2}+\cdots +q^{n-1}}

is the number of one-dimensional subspaces in (Fq)n (equivalently, the number of points in the associated projective space). Furthermore, when q is 1 (respectively −1), the Gaussian binomial coefficient yields the Euler characteristic of the corresponding complex (respectively real) Grassmannian.

The number of k-dimensional affine subspaces of Fqn is equal to

q n k ( n k ) q {\displaystyle q^{n-k}{n \choose k}_{q}} .

This allows another interpretation of the identity

( m r ) q = ( m 1 r ) q + q m r ( m 1 r 1 ) q {\displaystyle {m \choose r}_{q}={m-1 \choose r}_{q}+q^{m-r}{m-1 \choose r-1}_{q}}

as counting the (r − 1)-dimensional subspaces of (m − 1)-dimensional projective space by fixing a hyperplane, counting such subspaces contained in that hyperplane, and then counting the subspaces not contained in the hyperplane; these latter subspaces are in bijective correspondence with the (r − 1)-dimensional affine subspaces of the space obtained by treating this fixed hyperplane as the hyperplane at infinity.

In the conventions common in applications to quantum groups, a slightly different definition is used; the quantum binomial coefficient there is

q k 2 n k ( n k ) q 2 {\displaystyle q^{k^{2}-nk}{n \choose k}_{q^{2}}} .

This version of the quantum binomial coefficient is symmetric under exchange of q {\displaystyle q} and q 1 {\displaystyle q^{-1}} .

See also

  • List of q-analogs

References

  1. ^ Mukhin, Eugene, chapter 3
  2. ^ Mukhin, Eugene, chapter 3
  3. ^ Gauß, Carl Friedrich (1808). "Summatio quarumdam serierum singularium" (in Latin). {{cite journal}}: Cite journal requires |journal= (help)
  • Exton, H. (1983), q-Hypergeometric Functions and Applications, New York: Halstead Press, Chichester: Ellis Horwood, 1983, ISBN 0853124914, ISBN 0470274530, ISBN 978-0470274538
  • Mukhin, Eugene. "Symmetric Polynomials and Partitions" (PDF). Archived from the original (PDF) on March 4, 2016. (undated, 2004 or earlier).
  • Ratnadha Kolhatkar, Zeta function of Grassmann Varieties (dated January 26, 2004)
  • Weisstein, Eric W. "q-Binomial Coefficient". MathWorld.
  • Gould, Henry (1969). "The bracket function and Fontene-Ward generalized binomial coefficients with application to Fibonomial coefficients". Fibonacci Quarterly. 7: 23–40. MR 0242691.
  • Alexanderson, G. L. (1974). "A Fibonacci analogue of Gaussian binomial coefficients". Fibonacci Quarterly. 12: 129–132. MR 0354537.
  • Andrews, George E. (1974). "Applications of basic hypergeometric functions". SIAM Rev. 16 (4): 441–484. doi:10.1137/1016081. JSTOR 2028690. MR 0352557.
  • Borwein, Peter B. (1988). "Padé approximants for the q-elementary functions". Construct. Approx. 4 (1): 391–402. doi:10.1007/BF02075469. MR 0956175. S2CID 124884851.
  • Konvalina, John (1998). "Generalized binomial coefficients and the subset-subspace problem". Adv. Appl. Math. 21 (2): 228–240. doi:10.1006/aama.1998.0598. MR 1634713.
  • Di Bucchianico, A. (1999). "Combinatorics, computer algebra and the Wilcoxon-Mann-Whitney test". J. Stat. Plann. Inf. 79 (2): 349–364. CiteSeerX 10.1.1.11.7713. doi:10.1016/S0378-3758(98)00261-4.
  • Konvalina, John (2000). "A unified interpretation of the Binomial Coefficients, the Stirling numbers, and the Gaussian coefficients". Amer. Math. Monthly. 107 (10): 901–910. doi:10.2307/2695583. JSTOR 2695583. MR 1806919.
  • Kupershmidt, Boris A. (2000). "q-Newton binomial: from Euler to Gauss". J. Nonlinear Math. Phys. 7 (2): 244–262. arXiv:math/0004187. Bibcode:2000JNMP....7..244K. doi:10.2991/jnmp.2000.7.2.11. MR 1763640. S2CID 125273424.
  • Cohn, Henry (2004). "Projective geometry over F1 and the Gaussian Binomial Coefficients". Amer. Math. Monthly. 111 (6): 487–495. doi:10.2307/4145067. JSTOR 4145067. MR 2076581.
  • Kim, T. (2007). "q-Extension of the Euler formula and trigonometric functions". Russ. J. Math. Phys. 14 (3): –275–278. Bibcode:2007RJMP...14..275K. doi:10.1134/S1061920807030041. MR 2341775. S2CID 122865930.
  • Kim, T. (2008). "q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients". Russ. J. Math. Phys. 15 (1): 51–57. Bibcode:2008RJMP...15...51K. doi:10.1134/S1061920808010068. MR 2390694. S2CID 122966597.
  • Corcino, Roberto B. (2008). "On p,q-binomial coefficients". Integers. 8: #A29. MR 2425627.
  • Hmayakyan, Gevorg. "Recursive Formula Related To The Mobius Function" (PDF). (2009).