Lorentz space

In mathematical analysis, Lorentz spaces, introduced by George G. Lorentz in the 1950s,[1][2] are generalisations of the more familiar L p {\displaystyle L^{p}} spaces.

The Lorentz spaces are denoted by L p , q {\displaystyle L^{p,q}} . Like the L p {\displaystyle L^{p}} spaces, they are characterized by a norm (technically a quasinorm) that encodes information about the "size" of a function, just as the L p {\displaystyle L^{p}} norm does. The two basic qualitative notions of "size" of a function are: how tall is the graph of the function, and how spread out is it. The Lorentz norms provide tighter control over both qualities than the L p {\displaystyle L^{p}} norms, by exponentially rescaling the measure in both the range ( p {\displaystyle p} ) and the domain ( q {\displaystyle q} ). The Lorentz norms, like the L p {\displaystyle L^{p}} norms, are invariant under arbitrary rearrangements of the values of a function.

Definition

The Lorentz space on a measure space ( X , μ ) {\displaystyle (X,\mu )} is the space of complex-valued measurable functions f {\displaystyle f} on X such that the following quasinorm is finite

f L p , q ( X , μ ) = p 1 q t μ { | f | t } 1 p L q ( R + , d t t ) {\displaystyle \|f\|_{L^{p,q}(X,\mu )}=p^{\frac {1}{q}}\left\|t\mu \{|f|\geq t\}^{\frac {1}{p}}\right\|_{L^{q}\left(\mathbf {R} ^{+},{\frac {dt}{t}}\right)}}

where 0 < p < {\displaystyle 0<p<\infty } and 0 < q {\displaystyle 0<q\leq \infty } . Thus, when q < {\displaystyle q<\infty } ,

f L p , q ( X , μ ) = p 1 q ( 0 t q μ { x : | f ( x ) | t } q p d t t ) 1 q = ( 0 ( τ μ { x : | f ( x ) | p τ } ) q p d τ τ ) 1 q . {\displaystyle \|f\|_{L^{p,q}(X,\mu )}=p^{\frac {1}{q}}\left(\int _{0}^{\infty }t^{q}\mu \left\{x:|f(x)|\geq t\right\}^{\frac {q}{p}}\,{\frac {dt}{t}}\right)^{\frac {1}{q}}=\left(\int _{0}^{\infty }{\bigl (}\tau \mu \left\{x:|f(x)|^{p}\geq \tau \right\}{\bigr )}^{\frac {q}{p}}\,{\frac {d\tau }{\tau }}\right)^{\frac {1}{q}}.}

and, when q = {\displaystyle q=\infty } ,

f L p , ( X , μ ) p = sup t > 0 ( t p μ { x : | f ( x ) | > t } ) . {\displaystyle \|f\|_{L^{p,\infty }(X,\mu )}^{p}=\sup _{t>0}\left(t^{p}\mu \left\{x:|f(x)|>t\right\}\right).}

It is also conventional to set L , ( X , μ ) = L ( X , μ ) {\displaystyle L^{\infty ,\infty }(X,\mu )=L^{\infty }(X,\mu )} .

Decreasing rearrangements

The quasinorm is invariant under rearranging the values of the function f {\displaystyle f} , essentially by definition. In particular, given a complex-valued measurable function f {\displaystyle f} defined on a measure space, ( X , μ ) {\displaystyle (X,\mu )} , its decreasing rearrangement function, f : [ 0 , ) [ 0 , ] {\displaystyle f^{\ast }:[0,\infty )\to [0,\infty ]} can be defined as

f ( t ) = inf { α R + : d f ( α ) t } {\displaystyle f^{\ast }(t)=\inf\{\alpha \in \mathbf {R} ^{+}:d_{f}(\alpha )\leq t\}}

where d f {\displaystyle d_{f}} is the so-called distribution function of f {\displaystyle f} , given by

d f ( α ) = μ ( { x X : | f ( x ) | > α } ) . {\displaystyle d_{f}(\alpha )=\mu (\{x\in X:|f(x)|>\alpha \}).}

Here, for notational convenience, inf {\displaystyle \inf \varnothing } is defined to be {\displaystyle \infty } .

The two functions | f | {\displaystyle |f|} and f {\displaystyle f^{\ast }} are equimeasurable, meaning that

μ ( { x X : | f ( x ) | > α } ) = λ ( { t > 0 : f ( t ) > α } ) , α > 0 , {\displaystyle \mu {\bigl (}\{x\in X:|f(x)|>\alpha \}{\bigr )}=\lambda {\bigl (}\{t>0:f^{\ast }(t)>\alpha \}{\bigr )},\quad \alpha >0,}

where λ {\displaystyle \lambda } is the Lebesgue measure on the real line. The related symmetric decreasing rearrangement function, which is also equimeasurable with f {\displaystyle f} , would be defined on the real line by

R t 1 2 f ( | t | ) . {\displaystyle \mathbf {R} \ni t\mapsto {\tfrac {1}{2}}f^{\ast }(|t|).}

Given these definitions, for 0 < p < {\displaystyle 0<p<\infty } and 0 < q {\displaystyle 0<q\leq \infty } , the Lorentz quasinorms are given by

f L p , q = { ( 0 ( t 1 p f ( t ) ) q d t t ) 1 q q ( 0 , ) , sup t > 0 t 1 p f ( t ) q = . {\displaystyle \|f\|_{L^{p,q}}={\begin{cases}\left(\displaystyle \int _{0}^{\infty }\left(t^{\frac {1}{p}}f^{\ast }(t)\right)^{q}\,{\frac {dt}{t}}\right)^{\frac {1}{q}}&q\in (0,\infty ),\\\sup \limits _{t>0}\,t^{\frac {1}{p}}f^{\ast }(t)&q=\infty .\end{cases}}}

Lorentz sequence spaces

When ( X , μ ) = ( N , # ) {\displaystyle (X,\mu )=(\mathbb {N} ,\#)} (the counting measure on N {\displaystyle \mathbb {N} } ), the resulting Lorentz space is a sequence space. However, in this case it is convenient to use different notation.

Definition.

For ( a n ) n = 1 R N {\displaystyle (a_{n})_{n=1}^{\infty }\in \mathbb {R} ^{\mathbb {N} }} (or C N {\displaystyle \mathbb {C} ^{\mathbb {N} }} in the complex case), let ( a n ) n = 1 p = ( n = 1 | a n | p ) 1 / p {\textstyle \left\|(a_{n})_{n=1}^{\infty }\right\|_{p}=\left(\sum _{n=1}^{\infty }|a_{n}|^{p}\right)^{1/p}} denote the p-norm for 1 p < {\displaystyle 1\leq p<\infty } and ( a n ) n = 1 = sup n N | a n | {\textstyle \left\|(a_{n})_{n=1}^{\infty }\right\|_{\infty }=\sup _{n\in \mathbb {N} }|a_{n}|} the ∞-norm. Denote by p {\displaystyle \ell _{p}} the Banach space of all sequences with finite p-norm. Let c 0 {\displaystyle c_{0}} the Banach space of all sequences satisfying lim n a n = 0 {\displaystyle \lim _{n\to \infty }a_{n}=0} , endowed with the ∞-norm. Denote by c 00 {\displaystyle c_{00}} the normed space of all sequences with only finitely many nonzero entries. These spaces all play a role in the definition of the Lorentz sequence spaces d ( w , p ) {\displaystyle d(w,p)} below.

Let w = ( w n ) n = 1 c 0 1 {\displaystyle w=(w_{n})_{n=1}^{\infty }\in c_{0}\setminus \ell _{1}} be a sequence of positive real numbers satisfying 1 = w 1 w 2 w 3 {\displaystyle 1=w_{1}\geq w_{2}\geq w_{3}\geq \cdots } , and define the norm ( a n ) n = 1 d ( w , p ) = sup σ Π ( a σ ( n ) w n 1 / p ) n = 1 p {\textstyle \left\|(a_{n})_{n=1}^{\infty }\right\|_{d(w,p)}=\sup _{\sigma \in \Pi }\left\|(a_{\sigma (n)}w_{n}^{1/p})_{n=1}^{\infty }\right\|_{p}} . The Lorentz sequence space d ( w , p ) {\displaystyle d(w,p)} is defined as the Banach space of all sequences where this norm is finite. Equivalently, we can define d ( w , p ) {\displaystyle d(w,p)} as the completion of c 00 {\displaystyle c_{00}} under d ( w , p ) {\displaystyle \|\cdot \|_{d(w,p)}} .

Properties

The Lorentz spaces are genuinely generalisations of the L p {\displaystyle L^{p}} spaces in the sense that, for any p {\displaystyle p} , L p , p = L p {\displaystyle L^{p,p}=L^{p}} , which follows from Cavalieri's principle. Further, L p , {\displaystyle L^{p,\infty }} coincides with weak L p {\displaystyle L^{p}} . They are quasi-Banach spaces (that is, quasi-normed spaces which are also complete) and are normable for 1 < p < {\displaystyle 1<p<\infty } and 1 q {\displaystyle 1\leq q\leq \infty } . When p = 1 {\displaystyle p=1} , L 1 , 1 = L 1 {\displaystyle L^{1,1}=L^{1}} is equipped with a norm, but it is not possible to define a norm equivalent to the quasinorm of L 1 , {\displaystyle L^{1,\infty }} , the weak L 1 {\displaystyle L^{1}} space. As a concrete example that the triangle inequality fails in L 1 , {\displaystyle L^{1,\infty }} , consider

f ( x ) = 1 x χ ( 0 , 1 ) ( x ) and g ( x ) = 1 1 x χ ( 0 , 1 ) ( x ) , {\displaystyle f(x)={\tfrac {1}{x}}\chi _{(0,1)}(x)\quad {\text{and}}\quad g(x)={\tfrac {1}{1-x}}\chi _{(0,1)}(x),}

whose L 1 , {\displaystyle L^{1,\infty }} quasi-norm equals one, whereas the quasi-norm of their sum f + g {\displaystyle f+g} equals four.

The space L p , q {\displaystyle L^{p,q}} is contained in L p , r {\displaystyle L^{p,r}} whenever q < r {\displaystyle q<r} . The Lorentz spaces are real interpolation spaces between L 1 {\displaystyle L^{1}} and L {\displaystyle L^{\infty }} .

Hölder's inequality

f g L p , q A p 1 , p 2 , q 1 , q 2 f L p 1 , q 1 g L p 2 , q 2 {\displaystyle \|fg\|_{L^{p,q}}\leq A_{p_{1},p_{2},q_{1},q_{2}}\|f\|_{L^{p_{1},q_{1}}}\|g\|_{L^{p_{2},q_{2}}}} where 0 < p , p 1 , p 2 < {\displaystyle 0<p,p_{1},p_{2}<\infty } , 0 < q , q 1 , q 2 {\displaystyle 0<q,q_{1},q_{2}\leq \infty } , 1 / p = 1 / p 1 + 1 / p 2 {\displaystyle 1/p=1/p_{1}+1/p_{2}} , and 1 / q = 1 / q 1 + 1 / q 2 {\displaystyle 1/q=1/q_{1}+1/q_{2}} .

Dual space

If ( X , μ ) {\displaystyle (X,\mu )} is a nonatomic σ-finite measure space, then
(i) ( L p , q ) = { 0 } {\displaystyle (L^{p,q})^{*}=\{0\}} for 0 < p < 1 {\displaystyle 0<p<1} , or 1 = p < q < {\displaystyle 1=p<q<\infty } ;
(ii) ( L p , q ) = L p , q {\displaystyle (L^{p,q})^{*}=L^{p',q'}} for 1 < p < , 0 < q {\displaystyle 1<p<\infty ,0<q\leq \infty } , or 0 < q p = 1 {\displaystyle 0<q\leq p=1} ;
(iii) ( L p , ) { 0 } {\displaystyle (L^{p,\infty })^{*}\neq \{0\}} for 1 p {\displaystyle 1\leq p\leq \infty } . Here p = p / ( p 1 ) {\displaystyle p'=p/(p-1)} for 1 < p < {\displaystyle 1<p<\infty } , p = {\displaystyle p'=\infty } for 0 < p 1 {\displaystyle 0<p\leq 1} , and = 1 {\displaystyle \infty '=1} .

Atomic decomposition

The following are equivalent for 0 < p , 1 q {\displaystyle 0<p\leq \infty ,1\leq q\leq \infty } .
(i) f L p , q A p , q C {\displaystyle \|f\|_{L^{p,q}}\leq A_{p,q}C} .
(ii) f = n Z f n {\displaystyle f=\textstyle \sum _{n\in \mathbb {Z} }f_{n}} where f n {\displaystyle f_{n}} has disjoint support, with measure 2 n {\displaystyle \leq 2^{n}} , on which 0 < H n + 1 | f n | H n {\displaystyle 0<H_{n+1}\leq |f_{n}|\leq H_{n}} almost everywhere, and H n 2 n / p q ( Z ) A p , q C {\displaystyle \|H_{n}2^{n/p}\|_{\ell ^{q}(\mathbb {Z} )}\leq A_{p,q}C} .
(iii) | f | n Z H n χ E n {\displaystyle |f|\leq \textstyle \sum _{n\in \mathbb {Z} }H_{n}\chi _{E_{n}}} almost everywhere, where μ ( E n ) A p , q 2 n {\displaystyle \mu (E_{n})\leq A_{p,q}'2^{n}} and H n 2 n / p q ( Z ) A p , q C {\displaystyle \|H_{n}2^{n/p}\|_{\ell ^{q}(\mathbb {Z} )}\leq A_{p,q}C} .
(iv) f = n Z f n {\displaystyle f=\textstyle \sum _{n\in \mathbb {Z} }f_{n}} where f n {\displaystyle f_{n}} has disjoint support E n {\displaystyle E_{n}} , with nonzero measure, on which B 0 2 n | f n | B 1 2 n {\displaystyle B_{0}2^{n}\leq |f_{n}|\leq B_{1}2^{n}} almost everywhere, B 0 , B 1 {\displaystyle B_{0},B_{1}} are positive constants, and 2 n μ ( E n ) 1 / p q ( Z ) A p , q C {\displaystyle \|2^{n}\mu (E_{n})^{1/p}\|_{\ell ^{q}(\mathbb {Z} )}\leq A_{p,q}C} .
(v) | f | n Z 2 n χ E n {\displaystyle |f|\leq \textstyle \sum _{n\in \mathbb {Z} }2^{n}\chi _{E_{n}}} almost everywhere, where 2 n μ ( E n ) 1 / p q ( Z ) A p , q C {\displaystyle \|2^{n}\mu (E_{n})^{1/p}\|_{\ell ^{q}(\mathbb {Z} )}\leq A_{p,q}C} .

See also

References

  • Grafakos, Loukas (2008), Classical Fourier analysis, Graduate Texts in Mathematics, vol. 249 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-0-387-09432-8, ISBN 978-0-387-09431-1, MR 2445437.

Notes

  1. ^ G. Lorentz, "Some new function spaces", Annals of Mathematics 51 (1950), pp. 37-55.
  2. ^ G. Lorentz, "On the theory of spaces Λ", Pacific Journal of Mathematics 1 (1951), pp. 411-429.
  • v
  • t
  • e
Lp spaces
Basic concepts
L1 spacesL2 spaces L {\displaystyle L^{\infty }} spacesMapsInequalitiesResults
For Lebesgue measure
Applications & related
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category