Luttinger–Kohn model

The Luttinger–Kohn model is a flavor of the k·p perturbation theory used for calculating the structure of multiple, degenerate electronic bands in bulk and quantum well semiconductors. The method is a generalization of the single band k·p theory.

In this model, the influence of all other bands is taken into account by using Löwdin's perturbation method.[1]

Background

All bands can be subdivided into two classes:

  • Class A: six valence bands (heavy hole, light hole, split off band and their spin counterparts) and two conduction bands.
  • Class B: all other bands.

The method concentrates on the bands in Class A, and takes into account Class B bands perturbatively.

We can write the perturbed solution, ϕ {\displaystyle \phi _{}^{}} , as a linear combination of the unperturbed eigenstates ϕ i ( 0 ) {\displaystyle \phi _{i}^{(0)}} :

ϕ = n A , B a n ϕ n ( 0 ) {\displaystyle \phi =\sum _{n}^{A,B}a_{n}\phi _{n}^{(0)}}

Assuming the unperturbed eigenstates are orthonormalized, the eigenequations are:

( E H m m ) a m = n m A H m n a n + α m B H m α a α {\displaystyle (E-H_{mm})a_{m}=\sum _{n\neq m}^{A}H_{mn}a_{n}+\sum _{\alpha \neq m}^{B}H_{m\alpha }a_{\alpha }} ,

where

H m n = ϕ m ( 0 ) H ϕ n ( 0 ) d 3 r = E n ( 0 ) δ m n + H m n {\displaystyle H_{mn}=\int \phi _{m}^{(0)\dagger }H\phi _{n}^{(0)}d^{3}\mathbf {r} =E_{n}^{(0)}\delta _{mn}+H_{mn}^{'}} .

From this expression, we can write:

a m = n m A H m n E H m m a n + α m B H m α E H m m a α {\displaystyle a_{m}=\sum _{n\neq m}^{A}{\frac {H_{mn}}{E-H_{mm}}}a_{n}+\sum _{\alpha \neq m}^{B}{\frac {H_{m\alpha }}{E-H_{mm}}}a_{\alpha }} ,

where the first sum on the right-hand side is over the states in class A only, while the second sum is over the states on class B. Since we are interested in the coefficients a m {\displaystyle a_{m}} for m in class A, we may eliminate those in class B by an iteration procedure to obtain:

a m = n A U m n A δ m n H m n E H m m a n {\displaystyle a_{m}=\sum _{n}^{A}{\frac {U_{mn}^{A}-\delta _{mn}H_{mn}}{E-H_{mm}}}a_{n}} ,
U m n A = H m n + α m B H m α H α n E H α α + α , β m , n ; α β H m α H α β H β n ( E H α α ) ( E H β β ) + {\displaystyle U_{mn}^{A}=H_{mn}+\sum _{\alpha \neq m}^{B}{\frac {H_{m\alpha }H_{\alpha n}}{E-H_{\alpha \alpha }}}+\sum _{\alpha ,\beta \neq m,n;\alpha \neq \beta }{\frac {H_{m\alpha }H_{\alpha \beta }H_{\beta n}}{(E-H_{\alpha \alpha })(E-H_{\beta \beta })}}+\ldots }

Equivalently, for a n {\displaystyle a_{n}} ( n A {\displaystyle n\in A} ):

a n = n A ( U m n A E δ m n ) a n = 0 , m A {\displaystyle a_{n}=\sum _{n}^{A}(U_{mn}^{A}-E\delta _{mn})a_{n}=0,m\in A}

and

a γ = n A U γ n A H γ n δ γ n E H γ γ a n = 0 , γ B {\displaystyle a_{\gamma }=\sum _{n}^{A}{\frac {U_{\gamma n}^{A}-H_{\gamma n}\delta _{\gamma n}}{E-H_{\gamma \gamma }}}a_{n}=0,\gamma \in B} .

When the coefficients a n {\displaystyle a_{n}} belonging to Class A are determined, so are a γ {\displaystyle a_{\gamma }} .

Schrödinger equation and basis functions

The Hamiltonian including the spin-orbit interaction can be written as:

H = H 0 + 4 m 0 2 c 2 σ ¯ V × p {\displaystyle H=H_{0}+{\frac {\hbar }{4m_{0}^{2}c^{2}}}{\bar {\sigma }}\cdot \nabla V\times \mathbf {p} } ,

where σ ¯ {\displaystyle {\bar {\sigma }}} is the Pauli spin matrix vector. Substituting into the Schrödinger equation in Bloch approximation we obtain

H u n k ( r ) = ( H 0 + m 0 k Π + 2 k 2 4 m 0 2 c 2 V × p σ ¯ ) u n k ( r ) = E n ( k ) u n k ( r ) {\displaystyle Hu_{n\mathbf {k} }(\mathbf {r} )=\left(H_{0}+{\frac {\hbar }{m_{0}}}\mathbf {k} \cdot \mathbf {\Pi } +{\frac {\hbar ^{2}k^{2}}{4m_{0}^{2}c^{2}}}\nabla V\times \mathbf {p} \cdot {\bar {\sigma }}\right)u_{n\mathbf {k} }(\mathbf {r} )=E_{n}(\mathbf {k} )u_{n\mathbf {k} }(\mathbf {r} )} ,

where

Π = p + 4 m 0 2 c 2 σ ¯ × V {\displaystyle \mathbf {\Pi } =\mathbf {p} +{\frac {\hbar }{4m_{0}^{2}c^{2}}}{\bar {\sigma }}\times \nabla V}

and the perturbation Hamiltonian can be defined as

H = m 0 k Π . {\displaystyle H'={\frac {\hbar }{m_{0}}}\mathbf {k} \cdot \mathbf {\Pi } .}

The unperturbed Hamiltonian refers to the band-edge spin-orbit system (for k=0). At the band edge, the conduction band Bloch waves exhibits s-like symmetry, while the valence band states are p-like (3-fold degenerate without spin). Let us denote these states as | S {\displaystyle |S\rangle } , and | X {\displaystyle |X\rangle } , | Y {\displaystyle |Y\rangle } and | Z {\displaystyle |Z\rangle } respectively. These Bloch functions can be pictured as periodic repetition of atomic orbitals, repeated at intervals corresponding to the lattice spacing. The Bloch function can be expanded in the following manner:

u n k ( r ) = j A a j ( k ) u j 0 ( r ) + γ B a γ ( k ) u γ 0 ( r ) {\displaystyle u_{n\mathbf {k} }(\mathbf {r} )=\sum _{j'}^{A}a_{j'}(\mathbf {k} )u_{j'0}(\mathbf {r} )+\sum _{\gamma }^{B}a_{\gamma }(\mathbf {k} )u_{\gamma 0}(\mathbf {r} )} ,

where j' is in Class A and γ {\displaystyle \gamma } is in Class B. The basis functions can be chosen to be

u 10 ( r ) = u e l ( r ) = | S 1 2 , 1 2 = | S {\displaystyle u_{10}(\mathbf {r} )=u_{el}(\mathbf {r} )=\left|S{\frac {1}{2}},{\frac {1}{2}}\right\rangle =\left|S\uparrow \right\rangle }
u 20 ( r ) = u S O ( r ) = | 1 2 , 1 2 = 1 3 | ( X + i Y ) + 1 3 | Z {\displaystyle u_{20}(\mathbf {r} )=u_{SO}(\mathbf {r} )=\left|{\frac {1}{2}},{\frac {1}{2}}\right\rangle ={\frac {1}{\sqrt {3}}}|(X+iY)\downarrow \rangle +{\frac {1}{\sqrt {3}}}|Z\uparrow \rangle }
u 30 ( r ) = u l h ( r ) = | 3 2 , 1 2 = 1 6 | ( X + i Y ) + 2 3 | Z {\displaystyle u_{30}(\mathbf {r} )=u_{lh}(\mathbf {r} )=\left|{\frac {3}{2}},{\frac {1}{2}}\right\rangle =-{\frac {1}{\sqrt {6}}}|(X+iY)\downarrow \rangle +{\sqrt {\frac {2}{3}}}|Z\uparrow \rangle }
u 40 ( r ) = u h h ( r ) = | 3 2 , 3 2 = 1 2 | ( X + i Y ) {\displaystyle u_{40}(\mathbf {r} )=u_{hh}(\mathbf {r} )=\left|{\frac {3}{2}},{\frac {3}{2}}\right\rangle =-{\frac {1}{\sqrt {2}}}|(X+iY)\uparrow \rangle }
u 50 ( r ) = u ¯ e l ( r ) = | S 1 2 , 1 2 = | S {\displaystyle u_{50}(\mathbf {r} )={\bar {u}}_{el}(\mathbf {r} )=\left|S{\frac {1}{2}},-{\frac {1}{2}}\right\rangle =-|S\downarrow \rangle }
u 60 ( r ) = u ¯ S O ( r ) = | 1 2 , 1 2 = 1 3 | ( X i Y ) 1 3 | Z {\displaystyle u_{60}(\mathbf {r} )={\bar {u}}_{SO}(\mathbf {r} )=\left|{\frac {1}{2}},-{\frac {1}{2}}\right\rangle ={\frac {1}{\sqrt {3}}}|(X-iY)\uparrow \rangle -{\frac {1}{\sqrt {3}}}|Z\downarrow \rangle }
u 70 ( r ) = u ¯ l h ( r ) = | 3 2 , 1 2 = 1 6 | ( X i Y ) + 2 3 | Z {\displaystyle u_{70}(\mathbf {r} )={\bar {u}}_{lh}(\mathbf {r} )=\left|{\frac {3}{2}},-{\frac {1}{2}}\right\rangle ={\frac {1}{\sqrt {6}}}|(X-iY)\uparrow \rangle +{\sqrt {\frac {2}{3}}}|Z\downarrow \rangle }
u 80 ( r ) = u ¯ h h ( r ) = | 3 2 , 3 2 = 1 2 | ( X i Y ) {\displaystyle u_{80}(\mathbf {r} )={\bar {u}}_{hh}(\mathbf {r} )=\left|{\frac {3}{2}},-{\frac {3}{2}}\right\rangle =-{\frac {1}{\sqrt {2}}}|(X-iY)\downarrow \rangle } .

Using Löwdin's method, only the following eigenvalue problem needs to be solved

j A ( U j j A E δ j j ) a j ( k ) = 0 , {\displaystyle \sum _{j'}^{A}(U_{jj'}^{A}-E\delta _{jj'})a_{j'}(\mathbf {k} )=0,}

where

U j j A = H j j + γ j , j B H j γ H γ j E 0 E γ = H j j + γ j , j B H j γ H γ j E 0 E γ {\displaystyle U_{jj'}^{A}=H_{jj'}+\sum _{\gamma \neq j,j'}^{B}{\frac {H_{j\gamma }H_{\gamma j'}}{E_{0}-E_{\gamma }}}=H_{jj'}+\sum _{\gamma \neq j,j'}^{B}{\frac {H_{j\gamma }^{'}H_{\gamma j'}^{'}}{E_{0}-E_{\gamma }}}} ,
H j γ = u j 0 | m 0 k ( p + 4 m 0 c 2 σ ¯ × V ) | u γ 0 α k α m 0 p j γ α . {\displaystyle H_{j\gamma }^{'}=\left\langle u_{j0}\right|{\frac {\hbar }{m_{0}}}\mathbf {k} \cdot \left(\mathbf {p} +{\frac {\hbar }{4m_{0}c^{2}}}{\bar {\sigma }}\times \nabla V\right)\left|u_{\gamma 0}\right\rangle \approx \sum _{\alpha }{\frac {\hbar k_{\alpha }}{m_{0}}}p_{j\gamma }^{\alpha }.}

The second term of Π {\displaystyle \Pi } can be neglected compared to the similar term with p instead of k. Similarly to the single band case, we can write for U j j A {\displaystyle U_{jj'}^{A}}

D j j U j j A = E j ( 0 ) δ j j + α β D j j α β k α k β , {\displaystyle D_{jj'}\equiv U_{jj'}^{A}=E_{j}(0)\delta _{jj'}+\sum _{\alpha \beta }D_{jj'}^{\alpha \beta }k_{\alpha }k_{\beta },}
D j j α β = 2 2 m 0 [ δ j j δ α β + γ B p j γ α p γ j β + p j γ β p γ j α m 0 ( E 0 E γ ) ] . {\displaystyle D_{jj'}^{\alpha \beta }={\frac {\hbar ^{2}}{2m_{0}}}\left[\delta _{jj'}\delta _{\alpha \beta }+\sum _{\gamma }^{B}{\frac {p_{j\gamma }^{\alpha }p_{\gamma j'}^{\beta }+p_{j\gamma }^{\beta }p_{\gamma j'}^{\alpha }}{m_{0}(E_{0}-E_{\gamma })}}\right].}

We now define the following parameters

A 0 = 2 2 m 0 + 2 m 0 2 γ B p x γ x p γ x x E 0 E γ , {\displaystyle A_{0}={\frac {\hbar ^{2}}{2m_{0}}}+{\frac {\hbar ^{2}}{m_{0}^{2}}}\sum _{\gamma }^{B}{\frac {p_{x\gamma }^{x}p_{\gamma x}^{x}}{E_{0}-E_{\gamma }}},}
B 0 = 2 2 m 0 + 2 m 0 2 γ B p x γ y p γ x y E 0 E γ , {\displaystyle B_{0}={\frac {\hbar ^{2}}{2m_{0}}}+{\frac {\hbar ^{2}}{m_{0}^{2}}}\sum _{\gamma }^{B}{\frac {p_{x\gamma }^{y}p_{\gamma x}^{y}}{E_{0}-E_{\gamma }}},}
C 0 = 2 m 0 2 γ B p x γ x p γ y y + p x γ y p γ y x E 0 E γ , {\displaystyle C_{0}={\frac {\hbar ^{2}}{m_{0}^{2}}}\sum _{\gamma }^{B}{\frac {p_{x\gamma }^{x}p_{\gamma y}^{y}+p_{x\gamma }^{y}p_{\gamma y}^{x}}{E_{0}-E_{\gamma }}},}

and the band structure parameters (or the Luttinger parameters) can be defined to be

γ 1 = 1 3 2 m 0 2 ( A 0 + 2 B 0 ) , {\displaystyle \gamma _{1}=-{\frac {1}{3}}{\frac {2m_{0}}{\hbar ^{2}}}(A_{0}+2B_{0}),}
γ 2 = 1 6 2 m 0 2 ( A 0 B 0 ) , {\displaystyle \gamma _{2}=-{\frac {1}{6}}{\frac {2m_{0}}{\hbar ^{2}}}(A_{0}-B_{0}),}
γ 3 = 1 6 2 m 0 2 C 0 , {\displaystyle \gamma _{3}=-{\frac {1}{6}}{\frac {2m_{0}}{\hbar ^{2}}}C_{0},}

These parameters are very closely related to the effective masses of the holes in various valence bands. γ 1 {\displaystyle \gamma _{1}} and γ 2 {\displaystyle \gamma _{2}} describe the coupling of the | X {\displaystyle |X\rangle } , | Y {\displaystyle |Y\rangle } and | Z {\displaystyle |Z\rangle } states to the other states. The third parameter γ 3 {\displaystyle \gamma _{3}} relates to the anisotropy of the energy band structure around the Γ {\displaystyle \Gamma } point when γ 2 γ 3 {\displaystyle \gamma _{2}\neq \gamma _{3}} .

Explicit Hamiltonian matrix

The Luttinger-Kohn Hamiltonian D j j {\displaystyle \mathbf {D_{jj'}} } can be written explicitly as a 8X8 matrix (taking into account 8 bands - 2 conduction, 2 heavy-holes, 2 light-holes and 2 split-off)

H = ( E e l P z 2 P z 3 P + 0 2 P P 0 P z P + Δ 2 Q S / 2 2 P + 0 3 / 2 S 2 R E e l P z 2 P z 3 P + 0 2 P P 0 E e l P z 2 P z 3 P + 0 2 P P 0 E e l P z 2 P z 3 P + 0 2 P P 0 E e l P z 2 P z 3 P + 0 2 P P 0 E e l P z 2 P z 3 P + 0 2 P P 0 E e l P z 2 P z 3 P + 0 2 P P 0 ) {\displaystyle \mathbf {H} =\left({\begin{array}{cccccccc}E_{el}&P_{z}&{\sqrt {2}}P_{z}&-{\sqrt {3}}P_{+}&0&{\sqrt {2}}P_{-}&P_{-}&0\\P_{z}^{\dagger }&P+\Delta &{\sqrt {2}}Q^{\dagger }&-S^{\dagger }/{\sqrt {2}}&-{\sqrt {2}}P_{+}^{\dagger }&0&-{\sqrt {3/2}}S&-{\sqrt {2}}R\\E_{el}&P_{z}&{\sqrt {2}}P_{z}&-{\sqrt {3}}P_{+}&0&{\sqrt {2}}P_{-}&P_{-}&0\\E_{el}&P_{z}&{\sqrt {2}}P_{z}&-{\sqrt {3}}P_{+}&0&{\sqrt {2}}P_{-}&P_{-}&0\\E_{el}&P_{z}&{\sqrt {2}}P_{z}&-{\sqrt {3}}P_{+}&0&{\sqrt {2}}P_{-}&P_{-}&0\\E_{el}&P_{z}&{\sqrt {2}}P_{z}&-{\sqrt {3}}P_{+}&0&{\sqrt {2}}P_{-}&P_{-}&0\\E_{el}&P_{z}&{\sqrt {2}}P_{z}&-{\sqrt {3}}P_{+}&0&{\sqrt {2}}P_{-}&P_{-}&0\\E_{el}&P_{z}&{\sqrt {2}}P_{z}&-{\sqrt {3}}P_{+}&0&{\sqrt {2}}P_{-}&P_{-}&0\\\end{array}}\right)}

Summary

References

  1. ^ S.L. Chuang (1995). Physics of Optoelectronic Devices (First ed.). New York: Wiley. pp. 124–190. ISBN 978-0-471-10939-6. OCLC 31134252.

2. Luttinger, J. M. Kohn, W., "Motion of Electrons and Holes in Perturbed Periodic Fields", Phys. Rev. 97,4. pp. 869-883, (1955). https://journals.aps.org/pr/abstract/10.1103/PhysRev.97.869