Russo–Vallois integral

In mathematical analysis, the Russo–Vallois integral is an extension to stochastic processes of the classical Riemann–Stieltjes integral

f d g = f g d s {\displaystyle \int f\,dg=\int fg'\,ds}

for suitable functions f {\displaystyle f} and g {\displaystyle g} . The idea is to replace the derivative g {\displaystyle g'} by the difference quotient

g ( s + ε ) g ( s ) ε {\displaystyle g(s+\varepsilon )-g(s) \over \varepsilon } and to pull the limit out of the integral. In addition one changes the type of convergence.

Definitions

Definition: A sequence H n {\displaystyle H_{n}} of stochastic processes converges uniformly on compact sets in probability to a process H , {\displaystyle H,}

H = ucp- lim n H n , {\displaystyle H={\text{ucp-}}\lim _{n\rightarrow \infty }H_{n},}

if, for every ε > 0 {\displaystyle \varepsilon >0} and T > 0 , {\displaystyle T>0,}

lim n P ( sup 0 t T | H n ( t ) H ( t ) | > ε ) = 0. {\displaystyle \lim _{n\rightarrow \infty }\mathbb {P} (\sup _{0\leq t\leq T}|H_{n}(t)-H(t)|>\varepsilon )=0.}

One sets:

I ( ε , t , f , d g ) = 1 ε 0 t f ( s ) ( g ( s + ε ) g ( s ) ) d s {\displaystyle I^{-}(\varepsilon ,t,f,dg)={1 \over \varepsilon }\int _{0}^{t}f(s)(g(s+\varepsilon )-g(s))\,ds}
I + ( ε , t , f , d g ) = 1 ε 0 t f ( s ) ( g ( s ) g ( s ε ) ) d s {\displaystyle I^{+}(\varepsilon ,t,f,dg)={1 \over \varepsilon }\int _{0}^{t}f(s)(g(s)-g(s-\varepsilon ))\,ds}

and

[ f , g ] ε ( t ) = 1 ε 0 t ( f ( s + ε ) f ( s ) ) ( g ( s + ε ) g ( s ) ) d s . {\displaystyle [f,g]_{\varepsilon }(t)={1 \over \varepsilon }\int _{0}^{t}(f(s+\varepsilon )-f(s))(g(s+\varepsilon )-g(s))\,ds.}

Definition: The forward integral is defined as the ucp-limit of

I {\displaystyle I^{-}} : 0 t f d g = ucp- lim ε ( 0 ? ) I ( ε , t , f , d g ) . {\displaystyle \int _{0}^{t}fd^{-}g={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty (0?)}I^{-}(\varepsilon ,t,f,dg).}

Definition: The backward integral is defined as the ucp-limit of

I + {\displaystyle I^{+}} : 0 t f d + g = ucp- lim ε ( 0 ? ) I + ( ε , t , f , d g ) . {\displaystyle \int _{0}^{t}f\,d^{+}g={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty (0?)}I^{+}(\varepsilon ,t,f,dg).}

Definition: The generalized bracket is defined as the ucp-limit of

[ f , g ] ε {\displaystyle [f,g]_{\varepsilon }} : [ f , g ] ε = ucp- lim ε [ f , g ] ε ( t ) . {\displaystyle [f,g]_{\varepsilon }={\text{ucp-}}\lim _{\varepsilon \rightarrow \infty }[f,g]_{\varepsilon }(t).}

For continuous semimartingales X , Y {\displaystyle X,Y} and a càdlàg function H, the Russo–Vallois integral coincidences with the usual Itô integral:

0 t H s d X s = 0 t H d X . {\displaystyle \int _{0}^{t}H_{s}\,dX_{s}=\int _{0}^{t}H\,d^{-}X.}

In this case the generalised bracket is equal to the classical covariation. In the special case, this means that the process

[ X ] := [ X , X ] {\displaystyle [X]:=[X,X]\,}

is equal to the quadratic variation process.

Also for the Russo-Vallois Integral an Ito formula holds: If X {\displaystyle X} is a continuous semimartingale and

f C 2 ( R ) , {\displaystyle f\in C_{2}(\mathbb {R} ),}

then

f ( X t ) = f ( X 0 ) + 0 t f ( X s ) d X s + 1 2 0 t f ( X s ) d [ X ] s . {\displaystyle f(X_{t})=f(X_{0})+\int _{0}^{t}f'(X_{s})\,dX_{s}+{1 \over 2}\int _{0}^{t}f''(X_{s})\,d[X]_{s}.}

By a duality result of Triebel one can provide optimal classes of Besov spaces, where the Russo–Vallois integral can be defined. The norm in the Besov space

B p , q λ ( R N ) {\displaystyle B_{p,q}^{\lambda }(\mathbb {R} ^{N})}

is given by

| | f | | p , q λ = | | f | | L p + ( 0 1 | h | 1 + λ q ( | | f ( x + h ) f ( x ) | | L p ) q d h ) 1 / q {\displaystyle ||f||_{p,q}^{\lambda }=||f||_{L_{p}}+\left(\int _{0}^{\infty }{1 \over |h|^{1+\lambda q}}(||f(x+h)-f(x)||_{L_{p}})^{q}\,dh\right)^{1/q}}

with the well known modification for q = {\displaystyle q=\infty } . Then the following theorem holds:

Theorem: Suppose

f B p , q λ , {\displaystyle f\in B_{p,q}^{\lambda },}
g B p , q 1 λ , {\displaystyle g\in B_{p',q'}^{1-\lambda },}
1 / p + 1 / p = 1  and  1 / q + 1 / q = 1. {\displaystyle 1/p+1/p'=1{\text{ and }}1/q+1/q'=1.}

Then the Russo–Vallois integral

f d g {\displaystyle \int f\,dg}

exists and for some constant c {\displaystyle c} one has

| f d g | c | | f | | p , q α | | g | | p , q 1 α . {\displaystyle \left|\int f\,dg\right|\leq c||f||_{p,q}^{\alpha }||g||_{p',q'}^{1-\alpha }.}

Notice that in this case the Russo–Vallois integral coincides with the Riemann–Stieltjes integral and with the Young integral for functions with finite p-variation.

References

  • Russo, Francesco; Vallois, Pierre (1993). "Forward, backward and symmetric integration". Prob. Th. And Rel. Fields. 97: 403–421. doi:10.1007/BF01195073.
  • Russo, F.; Vallois, P. (1995). "The generalized covariation process and Ito-formula". Stoch. Proc. And Appl. 59 (1): 81–104. doi:10.1016/0304-4149(95)93237-A.
  • Zähle, Martina (2002). "Forward Integrals and Stochastic Differential Equations". In: Seminar on Stochastic Analysis, Random Fields and Applications III. Progress in Prob. Vol. 52. Birkhäuser, Basel. pp. 293–302. doi:10.1007/978-3-0348-8209-5_20. ISBN 978-3-0348-9474-6.
  • Adams, Robert A.; Fournier, John J. F. (2003). Sobolev Spaces (second ed.). Elsevier. ISBN 9780080541297.
  • v
  • t
  • e
Integrals
Types of
integralsIntegration
techniquesImproper integralsStochastic integralsMiscellaneous