Chlorure d'hydrogène

Page d’aide sur les redirections

« HCl » redirige ici. Pour les autres significations, voir HCL.

Page d’aide sur l’homonymie

Cet article concerne le corps pur. Pour le chlorure d'hydrogène en solution, voir Acide chlorhydrique.

Chlorure d'hydrogène
Image illustrative de l’article Chlorure d'hydrogène
Image illustrative de l’article Chlorure d'hydrogène
Identification
Nom UICPA acide chlorhydrique
chlorure d'hydrogène
No CAS 7647-01-0
No ECHA 100.028.723
No CE 231-595-7
Apparence gaz, incolore, d'odeur acre[1].
Propriétés chimiques
Formule HCl  [Isomères]
Masse molaire[3] 36,461 ± 0,002 g/mol
H 2,76 %, Cl 97,23 %,
pKa -4
Moment dipolaire 1,108 6 ± 0,000 3 D

[2]

Propriétés physiques
fusion −114 °C[1]
ébullition à 101,3 kPa : −85 °C[1]
Solubilité dans l'eau à 20 °C : 720 g·l-1[1]
Masse volumique 1,49 g·l-1 (gaz)[1]

équation[4] : ρ = 3.342 / 0.2729 ( 1 + ( 1 T / 324.65 ) 0.3217 ) {\displaystyle \rho =3.342/0.2729^{(1+(1-T/324.65)^{0.3217})}}
Masse volumique du liquide en kmol·m-3 et température en kelvins, de 158,97 à 324,65 K.
Valeurs calculées :
0,79748 g·cm-3 à 25 °C.

T (K) T (°C) ρ (kmol·m-3) ρ (g·cm-3)
158,97 −114,18 34,854 1,27081
170,02 −103,13 34,06278 1,24196
175,54 −97,61 33,65988 1,22727
181,06 −92,09 33,25168 1,21239
186,58 −86,57 32,83783 1,1973
192,11 −81,04 32,41796 1,18199
197,63 −75,52 31,99165 1,16645
203,15 −70 31,55843 1,15065
208,67 −64,48 31,11779 1,13459
214,2 −58,95 30,66913 1,11823
219,72 −53,43 30,21179 1,10155
225,24 −47,91 29,74502 1,08453
230,76 −42,39 29,26794 1,06714
236,29 −36,86 28,77954 1,04933
241,81 −31,34 28,27867 1,03107
T (K) T (°C) ρ (kmol·m-3) ρ (g·cm-3)
247,33 −25,82 27,76393 1,0123
252,86 −20,29 27,23368 0,99297
258,38 −14,77 26,68595 0,973
263,9 −9,25 26,1183 0,9523
269,42 −3,73 25,52773 0,93077
274,95 1,8 24,9104 0,90826
280,47 7,32 24,26133 0,88459
285,99 12,84 23,57384 0,85953
291,51 18,36 22,8386 0,83272
297,04 23,89 22,04198 0,80367
302,56 29,41 21,16264 0,77161
308,08 34,93 20,16371 0,73519
313,6 40,45 18,97084 0,6917
319,13 45,98 17,38176 0,63376
324,65 51,5 12,246 0,4465

Graphique P=f(T)

Pression de vapeur saturante

équation[4] : P v s = e x p ( 104.27 + 3731.2 T + ( 15.047 ) × l n ( T ) + ( 3.1340 E 2 ) × T 1 ) {\displaystyle P_{vs}=exp(104.27+{\frac {-3731.2}{T}}+(-15.047)\times ln(T)+(3.1340E-2)\times T^{1})}
Pression en pascals et température en kelvins, de 158,97 à 324,65 K.
Valeurs calculées :
4 722 161,04 Pa à 25 °C.

T (K) T (°C) P (Pa)
158,97 −114,18 13 522
170,02 −103,13 31 962,18
175,54 −97,61 46 856,36
181,06 −92,09 66 846,64
186,58 −86,57 93 068,96
192,11 −81,04 126 773,06
197,63 −75,52 169 316,03
203,15 −70 222 156,14
208,67 −64,48 286 847,69
214,2 −58,95 365 037,4
219,72 −53,43 458 462,74
225,24 −47,91 568 952,44
230,76 −42,39 698 429,36
236,29 −36,86 848 915,79
241,81 −31,34 1 022 541,06
T (K) T (°C) P (Pa)
247,33 −25,82 1 221 551,62
252,86 −20,29 1 448 323,34
258,38 −14,77 1 705 376,06
263,9 −9,25 1 995 390,34
269,42 −3,73 2 321 226,34
274,95 1,8 2 685 944,85
280,47 7,32 3 092 830,5
285,99 12,84 3 545 417,17
291,51 18,36 4 047 515,78
297,04 23,89 4 603 244,46
302,56 29,41 5 217 061,42
308,08 34,93 5 893 800,65
313,6 40,45 6 638 710,64
319,13 45,98 7 457 496,57
324,65 51,5 8 356 400
P=f(T)
Point critique 51,35 °C, 8,26 MPa [5]
Point triple 160 K (−114 °C), 13,8 kPa
Vitesse du son 296 m·s-1 (°C,1 atm)[6]
Thermochimie
S0gaz, 1 bar 186,90 J·K-1·mol-1
ΔfH0gaz −92,31 kJ·mol-1
Δvap 16,15 kJ·mol-1 (1 atm, −85 °C);

9,08 kJ·mol-1 (1 atm, 25 °C)[7]

Cp 29,14 J/mol·K (25 °C)

équation[4] : C P = ( 4.7300 E 4 ) + ( 90.000 ) × T {\displaystyle C_{P}=(4.7300E4)+(90.000)\times T}
Capacité thermique du liquide en J·kmol-1·K-1 et température en kelvins, de 165 à 185 K.
Valeurs calculées :

T
(K)
T
(°C)
Cp
( J k m o l × K ) {\displaystyle ({\tfrac {J}{kmol\times K}})}
Cp
( J k g × K ) {\displaystyle ({\tfrac {J}{kg\times K}})}
165 −108,15 62 150 1 705
166 −107,15 62 240 1 707
167 −106,15 62 330 1 709
167 −106,15 62 330 1 709
168 −105,15 62 420 1 712
169 −104,15 62 510 1 714
169 −104,15 62 510 1 714
170 −103,15 62 600 1 717
171 −102,15 62 690 1 719
171 −102,15 62 690 1 719
172 −101,15 62 780 1 722
173 −100,15 62 870 1 724
173 −100,15 62 870 1 724
174 −99,15 62 960 1 727
175 −98,15 63 050 1 729
T
(K)
T
(°C)
Cp
( J k m o l × K ) {\displaystyle ({\tfrac {J}{kmol\times K}})}
Cp
( J k g × K ) {\displaystyle ({\tfrac {J}{kg\times K}})}
175 −98,15 63 050 1 729
176 −97,15 63 140 1 732
177 −96,15 63 230 1 734
177 −96,15 63 230 1 734
178 −95,15 63 320 1 737
179 −94,15 63 410 1 739
179 −94,15 63 410 1 739
180 −93,15 63 500 1 742
181 −92,15 63 590 1 744
181 −92,15 63 590 1 744
182 −91,15 63 680 1 747
183 −90,15 63 770 1 749
183 −90,15 63 770 1 749
184 −89,15 63 860 1 751
185 −88,15 63 950 1 754

P=f(T)

Précautions
SGH[9]
SGH04 : Gaz sous pressionSGH05 : CorrosifSGH06 : Toxique
Danger
H314 et H331
H314 : Provoque de graves brûlures de la peau et des lésions oculaires
H331 : Toxique par inhalation
SIMDUT[10]
A : Gaz compriméD1A : Matière très toxique ayant des effets immédiats gravesE : Matière corrosive
A, D1A, E,
A : Gaz comprimé
Tension de vapeur absolue à 50 °C = 7 950 kPa
D1A : Matière très toxique ayant des effets immédiats graves
Transport des marchandises dangereuses : classe 2.3
E : Matière corrosive
Transport des marchandises dangereuses : classe 8

Divulgation à 1,0% selon la liste de divulgation des ingrédients
NFPA 704

Symbole NFPA 704.

2
3
1
W
Transport
268
   1050   
Code Kemler :
268 : gaz toxique et corrosif
Numéro ONU :
1050 : CHLORURE D’HYDROGÈNE ANHYDRE
Classe :
2.3
Code de classification :
2TC : Gaz liquéfié, toxique, corrosif ;
Étiquettes :
pictogramme ADR 2.3
2.3 : Gaz toxiques (correspond aux groupes désignés par un T majuscule, c'est-à-dire T, TF, TC, TO, TFC et TOC).

8 : Matières corrosives

-
   2186   
Numéro ONU :
2186 : CHLORURE D’HYDROGÈNE LIQUIDE RÉFRIGÉRÉ
Classe :
2.3
Code de classification :
3TC : Gaz liquéfié réfrigéré, toxique, corrosif ;
Étiquettes :
pictogramme ADR 2.3
2.3 : Gaz toxiques (correspond aux groupes désignés par un T majuscule, c'est-à-dire T, TF, TC, TO, TFC et TOC).

8 : Matières corrosives

Selon le chapitre 2.2.2.2.2, le chlorure d'hydrogène, sous sa forme liquéfiée réfrigérée n'est pas autorisé au transport par l'ADR
« ADR 2021 Vol 1 » [PDF], Nations unies, (ISBN 978-92-1-139177-0, consulté le ), p. 136
Inhalation amener à l'air frais, éventuellement réanimation cardiopulmonaire
Peau enlever les vêtements souillés, laver à grande eau, montrer à un médecin
Yeux laver à grande eau en maintenant les paupières ouvertes, montrer à un ophtalmologiste
Ingestion ne pas faire boire, ne pas faire vomir, contacter un médecin.
Écotoxicologie
Seuil de l’odorat bas : 0,25 ppm
haut : 10,06 ppm[11]

Unités du SI et CNTP, sauf indication contraire.
modifier Consultez la documentation du modèle

Le chlorure d’hydrogène, de symbole chimique HCl, est un corps composé de chlore et d'hydrogène, incolore, toxique et hautement corrosif. Dans les conditions ambiantes de température et de pression, c'est un gaz qui forme des fumées blanches au contact de l'humidité. Ces fumées sont constituées d'acide chlorhydrique, solution ionique de chlorure d'hydrogène dans l'eau.

Le chlorure d'hydrogène, à l’instar de l'acide chlorhydrique, est un produit chimique important en chimie, dans l’industrie ou dans la science. Le nom HCl se réfère parfois de manière impropre à l'acide chlorhydrique au lieu du chlorure d'hydrogène pur. Les chimistes parlent parfois d'acide chlorhydrique gazeux ou anhydre pour se référer au chlorure d'hydrogène.

Histoire

Le chlorure d’hydrogène est connu depuis le Moyen Âge, où les alchimistes savaient que l’acide chlorhydrique (connu alors sous le nom d’esprit de sel ou acidum salis) était dans certaines circonstances lié à des vapeurs appelées gaz acide marin.

Au XVIIe siècle, Johann Rudolf Glauber utilisa du sel (chlorure de sodium) et de l’acide sulfurique pour fabriquer du sulfate de sodium, avec pour produit secondaire de réaction du chlorure d’hydrogène :

2 NaCl + H2SO4 → 2 HCl + Na2SO4.

Cette découverte est parfois attribuée à Carl Wilhelm Scheele, qui mit également en œuvre cette réaction en 1772. Joseph Priestley obtint du chlorure d’hydrogène pur en 1772, et en 1818, Humphry Davy démontra que ce gaz est composé d’hydrogène et de chlore.

Au cours de la révolution industrielle, la demande pour des substances alcalines, et notamment de carbonate de sodium devint de plus en plus importante. Nicolas Leblanc développa un nouveau procédé industriel de production de carbonate de sodium. Dans le procédé Leblanc, du sel (chlorure de sodium) est converti en carbonate de sodium en utilisant de l’acide sulfurique, de la craie et du charbon, avec une production secondaire de chlorure d’hydrogène. Jusqu’à la promulgation au Royaume-Uni de l’Alkali Act en 1863, ce dernier était libéré dans l'air. Les producteurs de carbonate de sodium durent alors le dissoudre dans l’eau, ce qui permit de produire de l’acide chlorhydrique à l’échelle industrielle. Plus tard, le procédé Hargreaves fut développé, similaire au procédé Leblanc à ceci près que l’acide sulfurique est remplacé par du dioxyde de soufre, de l’eau et l’air. Au début du XXe siècle, le procédé Leblanc fut remplacé par le procédé Solvay qui ne produit pas de chlorure d’hydrogène. Cependant, le chlorure d’hydrogène constitue toujours une étape dans la production de l’acide chlorhydrique.

Chimie

Le changement de couleur du papier pH montre que le chlorure d’hydrogène gazeux est acide

La molécule de chlorure d’hydrogène HCl est une molécule diatomique constituée d’un atome d’hydrogène H et d'un atome de chlore Cl, liés par une liaison simple. Le chlore étant nettement plus électronégatif que l’hydrogène, la liaison est polarisée. En conséquence, la molécule porte un moment dipolaire important, avec une charge partielle négative δ portée par l’atome de chlore et une charge partielle positive δ+ portée par l’atome d’hydrogène. Le chlorure d’hydrogène est donc une molécule polaire. Elle est très soluble dans l’eau et dans les solvants polaires.

Au contact de l’eau, le chlorure d’hydrogène s’ionise pour former des anions chlorures Cl et des cations hydronium H3O+ (H+ solvaté) :

HCl + H2O → H3O+ + Cl

La solution résultant de la réaction est appelée acide chlorhydrique. C’est un acide fort ce qui signifie que la constante d’acidité Ka (qui est liée au taux de dissociation de la molécule d’HCl) est très élevée : le chlorure d’hydrogène se dissocie presque totalement dans l’eau.

Même en l’absence d’eau, le chlorure d’hydrogène agit tout de même comme un acide. Par exemple, HCl peut se dissoudre dans d’autres solvants comme le méthanol et protoner des ions ou des molécules, agissant comme acide catalyseur pour certaines réactions chimiques pour lesquelles des conditions anhydres (absence totale d'eau) sont nécessaires :

HCl + CH3OH → CH3O+H2 + Cl (protonation par HCl d'une molécule de méthanol CH3OH)

Du fait de sa nature acide, le chlorure d'hydrogène est un gaz corrosif, tout particulièrement en présence d’humidité (25 ppm d'eau suffisent).

Production

La majeure partie du chlorure d’hydrogène produit dans l’industrie est utilisée pour la production d’acide chlorhydrique.

Une méthode courante de production de chlorure d’hydrogène dans l’industrie est le « four HCl », dans lequel du dihydrogène et du dichlore gazeux réagissent au cours d'une réaction exothermique pour former du chlorure d’hydrogène :

Cl2 + H2 → 2 HCl

Cette réaction est utilisée pour fabriquer un produit très pur, destiné notamment à l’industrie alimentaire.

Le chlorure d’hydrogène peut également être produit à partir du dichlore et de composés contenant de l’hydrogène par exemple les hydrocarbures. La chloration des composés organiques peut donner lieu à la production de chlorure d’hydrogène :

R-H + Cl2 → R-Cl + HCl

La réaction de produits chlorés avec du fluorure d’hydrogène pour former des composés fluorés permet également de produire du chlorure d’hydrogène :

R-Cl + HF → R-F + HCl

Lorsque ces réactions ont lieu en milieu anhydre (absence d’eau), il se forme du HCl gazeux.

Le chlorure d’hydrogène peut également être produit à l’échelle industrielle à partir de chlorure de sodium (NaCl) et d’acide sulfurique[12] :

2 NaCl + H2SO4 → 2 HCl + Na2SO4.

Synthèse du chlorure d'hydrogène

Le chlorure d’hydrogène peut être synthétisé en ajoutant lentement de l’eau (ou un acide) à certains réactifs chlorés en excès, tels que des chlorures de phosphore, le chlorure de thionyle (SOCl2) ou des chlorures d'acyle. Un ajout trop important d’eau peut conduire à la dissolution du chlorure d’hydrogène formé et à la formation d’acide chlorhydrique. Par exemple, l’ajout lent d’eau froide au pentachlorure de phosphore conduit à la formation d’HCl suivant :

PCl5 + H2O → POCl3 + 2 HCl

Un ajout d’eau chaude permet d’obtenir plus de HCl en hydrolysant PCl5 en acide phosphorique. La réaction chimique entre l’eau et le trichlorure de phosphore PCl3 produit également du HCl.

La réaction du chlorure de thionyle avec l’eau produit du HCl ainsi que du dioxyde de soufre SO2. Pour les réactions du chlorure de thionyle ou des chlorures d’acyle avec l’eau, voir chlorure de thionyle et chlorure d'acyle.

Générateur d’HCl

Il est possible de préparer de petites quantités d’HCl pour une utilisation en laboratoire en utilisant un générateur d’HCl suivant différentes méthodes :

Généralement, l’acide chlorhydrique ou l’acide sulfurique est ajouté goutte à goutte au réactif dans un ballon. L’HCl peut être séché en le faisant buller au travers d’acide sulfurique concentré.

Utilisations

Les utilisations historiques du chlorure d’hydrogène au cours du XXe siècle incluent notamment l’hydrochloration des alcynes pour la production des monomères chlorés chloroprène et chlorure de vinyle, qui sont ensuite polymérisés pour fabriquer du polychloroprène (néoprène) et polychlorure de vinyle (PVC). Pour la production de chlorure de vinyle, l’acétylène (C2H2) subit une addition de HCl sur la triple liaison pour former du chlorure de vinyle.

Le « procédé acétylène », utilisé depuis les années 1960 pour produire le chloroprène, commence par la réaction de deux molécules d’acétylène. L’intermédiaire obtenu subit une addition de HCl sur la triple liaison ce qui conduit au chloroprène :

Le procédé acétylène a été remplacé par un procédé au cours duquel Cl2 s’additionne à l’une des doubles liaisons du 1,3-butadiène, étape suivie par une élimination qui produit du chloroprène et du HCl.

À l’heure actuelle, les principales applications du chlorure d'hydrogène concernent :

Effets sur la santé

Le chlorure d’hydrogène forme de l’acide chlorhydrique au contact des tissus du corps. Son inhalation peut causer de la toux, la suffocation, l’inflammation des parois nasales, de la gorge et du système respiratoire. Dans les cas les plus graves, elle peut entraîner un œdème pulmonaire, une défaillance du système cardiovasculaire et la mort. Le chlorure d’hydrogène peut causer de graves brûlures des yeux et des dommages oculaires irréversibles. Il ne doit être utilisé que dans une pièce bien ventilée et avec un masque.

Voir aussi

Sur les autres projets Wikimedia :

  • chlorure d’hydrogène, sur le Wiktionnaire

Notes et références

  1. a b c d et e CHLORURE D'HYDROGENE, Fiches internationales de sécurité chimique
  2. (en) David R. Lide, Handbook of chemistry and physics, Boca Raton, CRC, , 89e éd., 2736 p. (ISBN 978-1-4200-6679-1), p. 9-50
  3. Masse molaire calculée d’après « Atomic weights of the elements 2007 », sur www.chem.qmul.ac.uk.
  4. a b et c (en) Robert H. Perry et Donald W. Green, Perry's Chemical Engineers' Handbook, USA, McGraw-Hill, , 7e éd., 2400 p. (ISBN 0-07-049841-5), p. 2-50
  5. (en) Klotz, Irving M. / Rosenberg, Robert M., Chemical Thermodynamics, Basic Concepts and Methods, Wiley-VCH Verlag GmbH & Co. KGaA, , 564 p. (ISBN 978-0-471-78015-1 et 0-471-78015-4), p. 98
  6. (en) W. M Haynes, Handbook of chemistry and physics, CRC, 2010-2011, 91e éd., 2610 p. (ISBN 978-1-4398-2077-3), p. 14-40
  7. (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc, , 90e éd., 2804 p., Relié (ISBN 978-1-4200-9084-0)
  8. « chlorure d'hydrogene », sur ESIS, consulté le 19 février 2009
  9. Numéro index 017-002-00-2 dans le tableau 3.1 de l'annexe VI du règlement CE N° 1272/2008 (16 décembre 2008)
  10. « Chlorure d'hydrogène » dans la base de données de produits chimiques Reptox de la CSST (organisme québécois responsable de la sécurité et de la santé au travail), consulté le 25 avril 2009
  11. « Hydrogen chloride », sur hazmap.nlm.nih.gov (consulté le )
  12. « Chlorure d'hydrogène », sur Société chimique de France, (consulté le )
v · m
Chlorures
Cl(-I)
  • AcCl3
  • AgCl
  • AlCl3
  • AmCl3
  • AsCl3
  • AsCl5
  • AtCl
  • AuCl
  • AuCl3
  • Au4Cl8
  • BCl3
  • B2Cl4
  • BaCl2
  • BeCl2
  • BiCl3
  • CaCl2
  • CdCl2
  • CeCl3
  • CoCl2
  • CoCl3
  • CrCl2
  • CrCl3
  • CrCl4
  • CsCl
  • CuCl
  • DyCl3
  • ErCl3
  • EuCl2
  • EuCl3
  • FeCl2
  • FeCl3
  • GaCl3
  • GdCl3
  • GeCl4
  • DCl
  • HCl
  • HfCl4
  • HgCl2
  • Hg2Cl2
  • HoCl3
  • InCl3
  • IrCl3
  • KCl
  • LaCl3
  • LiCl
  • LuCl3
  • MgCl2
  • MnCl2
  • MnCl3
  • MnCl4
  • MoCl4
  • MoCl5
  • MoCl6
  • Cl3N
  • Cl4N2
  • NaCl
  • NbCl4
  • NbCl5
  • NdCl3
  • NiCl2
  • ClO
  • ClO2
  • Cl2O
  • Cl2O2
  • Cl2O4
  • Cl2O3
  • Cl2O4
  • Cl2O6
  • Cl2O7
  • ClO4
  • OsCl4
  • PCl3
  • PCl5
  • PaCl5
  • PbCl2
  • PbCl4
  • PdCl2
  • PmCl3
  • PrCl3
  • PtCl2
  • PtCl4
  • PuCl3
  • RaCl
  • RbCl
  • ReCl3
  • Re2Cl10
  • RhCl3
  • RuCl3
  • S2Cl2
  • SCl2
  • SCl4
  • SbCl3
  • SbCl5
  • ScCl3
  • Se2Cl2
  • SeCl4
  • SiCl4
  • SmCl2
  • SmCl3
  • SnCl2
  • SnCl4
  • SrCl2
  • TaCl5
  • TbCl3
  • TcCl2
  • TcCl3
  • TcCl4
  • TcCl5
  • Te2Cl3
  • TeCl4
  • ThCl4
  • TiCl2
  • TiCl3
  • TiCl4
  • TlCl
  • TmCl3
  • UCl3
  • UCl4
  • UCl5
  • VCl2
  • VCl3
  • VCl4
  • W2Cl10
  • WCl6
  • YCl3
  • YbCl2
  • YbCl3
  • ZnCl2
  • ZrCl3
  • ZrCl4
Interhalogènes
Composés BCl4, AuCl4
  • AgBCl4
  • HAuCl4
Composés AlCl6, PCl6...
  • Cs2AlCl5
  • K3AlCl6
  • Na3AlCl6
  • HPCl6
  • AgPCl6
  • KPCl6
  • LiPCl6
  • NH4PCl6
  • NaPCl6
  • TlPCl6
  • HSbCl6
  • KSbCl6
  • NaSbCl6
  • BaSiCl6
  • Na2TiCl6
  • Na2ZrCl6
Composés NbCl7, TaCl7
  • K2NbCl7
  • K2TaCl7
Perchlorocarbures
  • CCl4
  • C2Cl6
Hydrocarbures halogénés
  • CBrCl3
  • CBr2Cl2
  • CBr3Cl
  • CClF3
  • CCl2F2
  • CCl3F
  • CCl3I
  • CHCl3
  • CH2Cl2
  • CH3Cl
  • C2H3Cl
  • C6H5Cl
Oxohalogénures
  • BrO2Cl
  • ClCN
  • CCl2O
  • ClO2F
  • ClO3F
  • CrO2Cl2
  • IOCl3
  • IO3Cl
  • NH4Cl
  • ClNO
  • ClNO2
  • ClNO3
  • POCl3
  • PSCl3
  • SOCl2
  • SO2Cl2
  • ThOCl2
v · m
Hydrures alcalins
(groupe 1)
Hydrures alcalino-terreux
(groupe 2)
Monohydrures
  • BeH
  • MgH
  • CaH
  • SrH
  • BaH
Dihydrures
  • BeH2
  • MgH2
  • CaH2
  • SrH2
  • BaH2
Hydrures du groupe 13
Boranes
  • BH3
  • B2H6
  • B2H2
  • B2H4
  • B4H10
  • B5H9
  • B5H11
  • B6H10
  • B6H12
  • B10H14
  • B18H22
Alanes
  • AlH3
  • Al2H6
Gallanes
  • GaH3
  • Ga2H6
Indiganes
  • InH3
  • In2H6
Thallanes
  • TlH3
  • Tl2H6
Hydrures du groupe 14
Hydrocarbures
Alcanes linéaires
  • CH4
  • C2H6
  • C3H8
  • C4H10
  • C5H12
  • C6H14
  • C7H16
  • C8H18
  • C9H20
  • C10H22
Alcènes linéaires
  • C2H4
  • C3H6
  • C4H8
  • C5H10
  • C6H12
  • C7H14
  • C8H16
  • C9H18
  • C10H20
Alcynes linéaires
  • C2H2
  • C3H4
  • C4H6
  • C5H8
  • C6H10
  • C7H12
  • C8H14
  • C9H16
  • C10H18
Hydrures de silicium
Silanes linéaires
  • SiH4
  • Si2H6
  • Si3H8
  • Si4H10
  • Si5H12
  • Si6H14
  • Si7H16
  • Si8H18
  • Si9H20
  • Si10H22
Silènes linéaires
  • Si2H4
Silynes linéaires
  • Si2H2
Germanes
  • GeH4
  • Ge2H6
  • Ge3H8
  • Ge4H10
  • Ge5H12
Stannanes
  • SnH4
  • Sn2H6
Plombanes
  • PbH4
Hydrures de pnictogène (groupe 15)
Composés de l'azote
Azanes
  • NH3
  • N2H4
  • N3H3
  • N3H5
  • N4H6
  • N5H7
  • N6H8
  • N7H9
  • N8H10
  • N9H11
  • N10H12
Azènes
  • N2H2
  • N3H3
  • N4H4
  • HN3
  • H5N5
  • H3N5
  • HN5
  • H2N6
  • NH (radical)
Composés du phosphore
Phosphanes
  • PH3
  • P2H4
  • P3H5
  • P4H6
  • P5H7
  • P6H8
  • P7H9
  • P8H10
  • P9H11
  • P10H12
Phosphènes
  • P2H2
  • P3H3
  • P4H4
  • P4H4
  • P4H2
  • P5H
  • P6H6
Arsanes
  • AsH3
  • As2H4
  • As5H5
Stibanes
  • SbH3
Bismuthanes
  • BiH3
Chalcogénures d'hydrogène
(groupe 16)
Polyoxydanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • H2O6
  • H2O7
  • H2O8
  • H2O9
  • H2O10
Polysulfanes
  • H2S
  • H2S2
  • H2S3
  • H2S4
  • H2S5
  • H2S6
  • H2S7
  • H2S8
  • H2S9
  • H2S10
Sélanes
  • H2Se
  • H2Se2
Tellanes
  • H2Te
  • H2Te2
Polanes
  • PoH2
Halogénures d'hydrogène
(groupe 17)
Hydrures de métal de transition
  • CdH2
  • CrH
  • CrH2
  • CrHx
  • CuH
  • FeH
  • FeH2
  • FeH5
  • HfH2
  • HgH2
  • NbH
  • NbH2
  • NiH
  • PdHx (x < 1)
  • ScH2
  • TaH
  • TiH2
  • TiH4
  • VH
  • VH2
  • YH2
  • YH3
  • ZnH2
  • ZrH2
Hydrures de lanthanide
  • LaH2
  • LaH3
  • LaH10
  • CeH2
  • CeH3
  • PrH2
  • PrH3
  • NdH2
  • NdH3
  • SmH2
  • SmH3
  • EuH2
  • GdH2
  • GdH3
  • TbH2
  • TbH3
  • DyH2
  • DyH3
  • HoH2
  • HoH3
  • ErH2
  • ErH3
  • TmH2
  • TmH3
  • YbH2
  • YbH2.5
  • LuH2
  • LuH3
Hydrures d'actinide
  • AcH2
  • ThH2
  • Th4H15
  • PaH3
  • UH3
  • NpH2
  • NpH3
  • PuH2
  • PuH3
  • AmH2
  • AmH3
  • CmH2
Exotiques
  • icône décorative Portail de la chimie