GFAJ-1

Halomonas sp. GFAJ-1
Штамм GFAJ-1, выращенный на мышьяке
Штамм GFAJ-1, выращенный на мышьяке
Научная классификация
Домен:
Бактерии
Тип:
Протеобактерии
Класс:
Гамма-протеобактерии
Порядок:
Oceanospirillales
Семейство:
Halomonadaceae
Род:
Halomonas
Штамм:
Halomonas sp. GFAJ-1
Международное научное название
Halomonas sp. GFAJ-1
Логотип Викивидов
Систематика
в Викивидах
Логотип Викисклада
Изображения
на Викискладе
NCBI  1118153

Halomonas sp. GFAJ-1, или штамм GFAJ-1 — палочковидные экстремофильные бактерии, относятся к гамма-протеобактериям. Найдены учёными НАСА в озере Моно, штат Калифорния (США). Бактерии примечательны своей способностью выживать при очень высоких концентрациях мышьяка. При открытии штамма GFAJ-1 было объявлено, что этот организм встраивает в свою ДНК мышьяк вместо фосфора, являясь таким образом единственной формой жизни на основе мышьяка; это свойство GFAJ-1 не нашло подтверждения.

Научная дискуссия, развернувшаяся после сообщения об открытии, продемонстрировала способность научного сообщества исправлять ошибки и артефакты исследований; история открытия GFAJ-1 стала примером зарождения и развенчания научной ошибки, в соответствии с принципом фальсифицируемости.

Интерес биологов к этой бактерии, возможно, останется, поскольку она отличается исключительной способностью выживать в присутствии ядовитого мышьяка даже после того, как он проник внутрь клетки.

Открытие

Озеро Моно
Предложенная структура ДНК бактерии

Микроорганизм GFAJ-1 был обнаружен геомикробиологом Фелисой Вулф-Саймон[англ.] из Астробиологического института НАСА в Менло-Парке, Калифорния. Организм был выделен в чистую культуру в начале 2009 года из отложений, которые исследовательница и её коллеги собрали вдоль берега озера Моно. Это гиперсалинное и очень щелочное озеро, в котором имеется одна из самых высоких естественных концентраций мышьяка в мире (200 мкM/л). Об открытии было широко сообщено 2 декабря 2010.

Учёными было выдвинуто предположение, что эти микроорганизмы в условиях нехватки фосфора способны жить и размножаться, замещая фосфор в составе ДНК на токсичный для других форм жизни мышьяк[1][2][3]. По словам Вольф-Саймон: «Мы знали, что некоторые микробы могут дышать мышьяком, но теперь мы нашли микробов, делающих кое-что новое — они выстраивают части собственного организма из мышьяка».

Предположения о возможности существования организмов, у которых роль фосфора может выполнять мышьяк, выдвигались и ранее[4]. Открытие организма, использующего в своей биохимии элементы, отличающиеся от общих для земной жизни углерода, кислорода, водорода, азота, фосфора и серы, могло бы добавить вес гипотезе об альтернативной биохимии и помочь в понимании возможных путей эволюции земной жизни[5] и в поиске жизни на других планетах[6].

Фосфор является одним из необходимых элементов жизни. Он входит в состав аденозинтрифосфата, универсального переносчика энергии клетки. Также фосфор является составной частью фосфолипидов, формирующих мембраны клеток.

Однако сообщение о том, что мышьяк может образовывать такие же устойчивые органические соединения, что и фосфор, вызвало волну критики в мировом научном сообществе. В частности, указывалось, что не был проведен рентгеноструктурный анализ ДНК, который смог бы дать точный ответ на вопрос, присутствует ли мышьяк в ДНК бактерии[7].

Критики, подвергающие сомнению связь между содержанием мышьяка в организме бактерии и использованием его в качестве компонентов организма, указывали на возможность существования механизма изоляции крупинок мышьяка в вакуолях, наподобие механизма изоляции серы в серных бактериях. Выдвигалось также предположение, что мышьяк используется бактериями не для построения ДНК, а ограничивается использованием мышьяколипидов, из которых, теоретически, могут быть построены клеточные мембраны, причём, скорее всего, из-за химической нестабильности мышьяколипидов, в комбинации с фосфолипидами.

Опровержение

Фото бактерии GFAJ-1, растущих в среде с фосфором. (Из статьи F. Wolfe-Simon и J. Switzer Blum)
Фото бактерии GFAJ-1, растущих в среде с мышьяком. (Из статьи F. Wolfe-Simon и J. Switzer Blum)

Через два года после открытия сразу две независимые группы исследователей опровергли факт существования биологически значимого мышьяка в ДНК бактерии.

Профессор Розмари Рэдфилд (англ.) в своём блоге 4 декабря 2010 года, анализируя статью Фелисы Вольф-Саймон, написала о том, что «высокотехнологичным методам определения содержания мышьяка, вроде масс-спектрометрии, предшествовали крайне примитивные методы выделения и очистки».[8] 21 июня 2011 года профессор получила для исследования живой штамм GFAJ-1. Ещё полгода потребовалось группе под руководством Рэдфилд (Университет Британской Колумбии, Ванкувер, Канада; Принстонский университет, США; Медицинский институт Говарда Хьюза, США), чтобы разобраться с условиями роста штамма GFAJ-1 в условиях избытка, или наоборот, недостатка различных элементов (калия, кальция, натрия, фосфора, мышьяка). Наконец, 14 января 2012 года, были обнародованы результаты. Из двух культур штамма, одна из которых была выращена в условиях избытка мышьяка, а вторая — при его отсутствии, была выделена ДНК. В результате, по данным центрифугирования в CsCl-градиенте и масс-спектрометрии мышьяк не был обнаружен ни в одной из проб. Таким образом, было доказано, что мышьяк не встраивается в ДНК бактерии GFAJ-1. Наличие мышьяка в работах Вольф-Саймон объяснялось небрежными методами очистки[9].

Группа исследователей из Института микробиологии Высшей технической школы Цюриха (Швейцария) показала, что даже в условиях недостатка фосфора и избытка соединений мышьяка бактерии до последнего будут использовать фосфор. Если концентрация фосфора падает ниже некоторого предельно допустимого значения, рост бактерий прекращается, и никакой мышьяк помочь им не в состоянии. Органические молекулы с мышьяком действительно могут попадаться в бактериях GFAJ-1, но, как оказалось, эти молекулы образуются абиотическим образом, то есть без помощи бактериальных ферментов, и самой бактерией не используются[10].

Некоторые СМИ утверждают, что «группа биологов из Ванкуверского университета Британской Колумбии опровергла свои же выводы»[11][12]. Однако это неверно — открывателями бактерии (и авторами утверждения о наличии мышьяка в ДНК) является группа Ф. Вулф-Саймон, Астробиологический институт НАСА, Калифорния, США.

В октябре 2012 года опубликована статья, авторы которой показали, что поверхностные белки GFAJ-1 связывают преимущественно фосфаты. Такое поведение наблюдалось даже тогда, когда концентрация арсенатов в среде была в 4,5 тысячи раз больше, чем фосфатов[13][14].

См. также

Примечания

  1. Wolfe-Simon F., Blum J.S., Kulp T.R., et al. A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus (англ.) // Science : journal. — 2010. — December. — doi:10.1126/science.1197258. — PMID 21127214. Архивировано 10 января 2012 года.
  2. Arsenic-eating microbe may redefine chemistry of life (англ.). naturenews. Дата обращения: 26 января 2011. Архивировано 24 февраля 2012 года.
  3. Астробиологическое открытие ведёт насыщенную ядом жизнь  (рус.). membrana. Дата обращения: 26 января 2011. Архивировано из оригинала 28 января 2012 года.
  4. Пол Дэвис. «Чужие среди своих» — журнал «В мире науки», № 3, март 2008 г.
  5. Алексей Тимошенко. Научными сенсациями 2010 года стали «Нобелевка» за графен и жизнь на основе мышьяка  (рус.). Фундаментальные основы жизни. gzt.ru (29 декабря 2010). Дата обращения: 29 декабря 2010. Архивировано 23 апреля 2011 года.
  6. Бактерии «на мышьяке» могут лучше себя чувствовать на Титане  (рус.). РИА Новости (3 декабря 2010). Дата обращения: 4 декабря 2010. Архивировано 6 июля 2012 года.
  7. Надежда Маркина. Эксперимент по поиску внеземного бюджета  (рус.). Infox.ru (13 декабря 2010). Дата обращения: 13 декабря 2010. Архивировано 6 июля 2012 года.
  8.  (англ.) Felisa Wolfe-Simon’s poster at the Dec. 2011 AGU meeting Архивная копия от 12 июля 2018 на Wayback Machine // http://rrresearch.fieldofscience.com Архивная копия от 15 февраля 2019 на Wayback Machine, 16 dec 2011
  9. Елена Клещенко. Две дамы, ДНК и мышьяк  (рус.). Дата обращения: 26 июля 2012. Архивировано 9 августа 2012 года.
  10. Кирилл Стасевич. Опровергнуто существование бактерий с ДНК на основе мышьяка  (рус.). Дата обращения: 26 июля 2012. Архивировано из оригинала 12 июля 2012 года.
  11. Открыватели бактерий, использующих мышьяк, опровергли свои выводы  (рус.). Дата обращения: 26 июля 2012. Архивировано из оригинала 20 декабря 2012 года.
  12. Открыватели «внеземной» формы жизни опровергли её существование  (рус.). Дата обращения: 26 июля 2012. Архивировано 9 августа 2012 года.
  13. Биологи попытались окончательно опровергнуть теорию «мышьяковой жизни»  (рус.). Lenta.ru (4 октября 2012). Дата обращения: 6 июля 2020. Архивировано 23 сентября 2020 года.
  14. ‘Arsenic-life’ bacterium prefers phosphorus after all  (неопр.). Nature News (3 октября 2012). Архивировано 8 декабря 2012 года.

Ссылки

  • Wolfe-Simon, Felisa; Blum, Jodi Switzer; Kulp, Thomas R.; Gordon, Gwyneth W.; Hoeft, Shelley E.; Pett-Ridge, Jennifer; Stolz, John F.; Webb, Samuel M.; Weber, Peter K.; Davies, Paul C. W.; Anbar1, Ariel D.; Oremland, Ronald S. (2010-12-02), Science (AAAS). doi:10.1126/science.1197258 «A bacterium that can grow by using arsenic instead of phosphorus» (англ.)
Логотип Викиновостей Обнаружены бактерии, использующие вместо фосфора мышьяк в Викиновостях
  • Д. Сафин. Обнаружена бактерия, которая обходится без фосфора
  • Н. Маркина. Учёные доказали мышьяковую жизнь
  • Найдены бактерии, которые используют мышьяк вместо фосфора
  • Астробиологи нашли бактерии, способные изменить представление о живом  (рус.). РИА Новости (2 декабря 2010). Архивировано 15 мая 2012 года.
  • Ольга Белоконева. В озере Моно живет бактерия — инопланетянка  (неопр.). Наука и жизнь.
  • New Bacteria Makes DNA With Arsenic1of2 на YouTube
  • New Bacteria Makes DNA With Arsenic 2of2 на YouTube
  • NASA confirms: Aliens are among us на YouTube
Перейти к шаблону «Экстремофилы»
Категории
Deinococcus radiodurans
Примечательные
экстремофилы
Бактерии
Археи
  • штамм 121[англ.]
  • Methanopyrus kandleri
  • Pyrococcus furiosus[англ.]
  • Pyrolobus fumarii[англ.]
Эукариоты
Связанные статьи