GNA13

edit
Guanin nukleotid-vezujući protein (G protein), alfa 13

PDB prikaz baziran na 1zcb.
Dostupne strukture
1zcb
Identifikatori
SimboliGNA13; G13; MGC46138
Vanjski IDOMIM: 604406 MGI: 95768 HomoloGene: 55976 GeneCards: GNA13 Gene
Ontologija gena
Molekularna funkcija vezivanje nukleotida
aktivnost GTPaze
aktivnost receptora signalnih proteina
vezivanje proteina
GTP vezivanje
Celularna komponenta membrana
Biološki proces obrazovaje krvnih sudova
in utero embrionski razvoj
ćelijska motilnost
prenos signala
signalni put G-protein spregnutog receptora
kaskada protein kinaza
Ro protein signalna transdukcija
regulacija ćelijskog oblika
ćelijska diferencijacija
aktivacija trombocita
regulacija ćelijske migracije
Pregled RNK izražavanja
podaci
Ortolozi
VrstaČovekMiš
Entrez1067214674
EnsemblENSG00000120063ENSMUSG00000020611
UniProtQ14344Q3UE40
RefSeq (mRNA)NM_006572NM_010303
RefSeq (protein)NP_006563NP_034433
Lokacija (UCSC)Chr 17:
60.44 - 60.48 Mb
Chr 11:
109.18 - 109.21 Mb
PubMed pretraga[1][2]

GNA13, Guanin nukleotid-vezujući protein alfa 13 je protein koji je kod ljudi kodiran GNA13 genom.[1][2]

Interactions

Za GNA12 je bilo pokazano da interaguje sa ARHGEF1,[3][4] AKAP3,[5] RIC8A,[6] Radixin[7] i ARHGEF12.[8][9]

Reference

  1. Kabouridis PS, Waters ST, Escobar S, Stanners J, Tsoukas CD (Jul 1995). „Expression of GTP-binding protein alpha subunits in human thymocytes”. Mol Cell Biochem 144 (1): 45–51. DOI:10.1007/BF00926739. PMID 7791744. 
  2. „Entrez Gene: GNA13 guanine nucleotide binding protein (G protein), alpha 13”. 
  3. Bhattacharyya, Raja; Wedegaertner Philip B (April 2003). „Mutation of an N-terminal acidic-rich region of p115-RhoGEF dissociates alpha13 binding and alpha13-promoted plasma membrane recruitment”. FEBS Lett. (Netherlands) 540 (1-3): 211–6. DOI:10.1016/S0014-5793(03)00267-9. ISSN 0014-5793. PMID 12681510. 
  4. Hart, M J; Jiang X, Kozasa T, Roscoe W, Singer W D, Gilman A G, Sternweis P C, Bollag G (June 1998). „Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13”. Science (UNITED STATES) 280 (5372): 2112–4. DOI:10.1126/science.280.5372.2112. ISSN 0036-8075. PMID 9641916. 
  5. Niu, J; Vaiskunaite R, Suzuki N, Kozasa T, Carr D W, Dulin N, Voyno-Yasenetskaya T A (October 2001). „Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates cAMP-independent PKA activation”. Curr. Biol. (England) 11 (21): 1686–90. DOI:10.1016/S0960-9822(01)00530-9. ISSN 0960-9822. PMID 11696326. 
  6. Tall, Gregory G; Krumins Andrejs M, Gilman Alfred G (March 2003). „Mammalian Ric-8A (synembryn) is a heterotrimeric Galpha protein guanine nucleotide exchange factor”. J. Biol. Chem. (United States) 278 (10): 8356–62. DOI:10.1074/jbc.M211862200. ISSN 0021-9258. PMID 12509430. 
  7. Vaiskunaite, R; Adarichev V, Furthmayr H, Kozasa T, Gudkov A, Voyno-Yasenetskaya T A (August 2000). „Conformational activation of radixin by G13 protein alpha subunit”. J. Biol. Chem. (UNITED STATES) 275 (34): 26206–12. DOI:10.1074/jbc.M001863200. ISSN 0021-9258. PMID 10816569. 
  8. Fukuhara, S; Chikumi H, Gutkind J S (November 2000). „Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho”. FEBS Lett. (NETHERLANDS) 485 (2-3): 183–8. DOI:10.1016/S0014-5793(00)02224-9. ISSN 0014-5793. PMID 11094164. 
  9. Suzuki, Nobuchika; Nakamura Susumu, Mano Hiroyuki, Kozasa Tohru (January 2003). „Galpha 12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF”. Proc. Natl. Acad. Sci. U.S.A. (United States) 100 (2): 733–8. DOI:10.1073/pnas.0234057100. ISSN 0027-8424. PMC 141065. PMID 12515866. 

Literatura

  • Ruppel KM, Willison D, Kataoka H, Wang A, Zheng YW, Cornelissen I, Liya Yin, Xu SM, and Coughlin SR (2005). „Essential role for Galpha 13 in endothelial cells during embryonic development.”. Proc. Natl. Acad. Sci. U.S.A. 102 (22): 8281–8286. DOI:10.1073/pnas.0503326102. PMC 1149452. PMID 15919816. 
  • Downes GB, Gautam N (2000). „The G protein subunit gene families.”. Genomics 62 (3): 544–52. DOI:10.1006/geno.1999.5992. PMID 10644457. 
  • Offermanns S, Laugwitz KL, Spicher K, Schultz G (1994). „G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets.”. Proc. Natl. Acad. Sci. U.S.A. 91 (2): 504–8. DOI:10.1073/pnas.91.2.504. PMC 42977. PMID 8290554. 
  • Laugwitz KL, Allgeier A, Offermanns S, et al. (1996). „The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families.”. Proc. Natl. Acad. Sci. U.S.A. 93 (1): 116–20. DOI:10.1073/pnas.93.1.116. PMC 40189. PMID 8552586. 
  • Offermanns S, Hu YH, Simon MI (1996). „Galpha12 and galpha13 are phosphorylated during platelet activation.”. J. Biol. Chem. 271 (42): 26044–8. DOI:10.1074/jbc.271.42.26044. PMID 8824244. 
  • Offermanns S, Mancino V, Revel JP, Simon MI (1997). „Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency.”. Science 275 (5299): 533–6. DOI:10.1126/science.275.5299.533. PMID 8999798. 
  • Macrez-Leprêtre N, Kalkbrenner F, Morel JL, et al. (1997). „G protein heterotrimer Galpha13beta1gamma3 couples the angiotensin AT1A receptor to increases in cytoplasmic Ca2+ in rat portal vein myocytes.”. J. Biol. Chem. 272 (15): 10095–102. DOI:10.1074/jbc.272.15.10095. PMID 9092554. 
  • Hart MJ, Jiang X, Kozasa T, et al. (1998). „Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13.”. Science 280 (5372): 2112–4. DOI:10.1126/science.280.5372.2112. PMID 9641916. 
  • Fukuhara S, Murga C, Zohar M, et al. (1999). „A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho.”. J. Biol. Chem. 274 (9): 5868–79. DOI:10.1074/jbc.274.9.5868. PMID 10026210. 
  • Becker KP, Garnovskaya M, Gettys T, Halushka PV (1999). „Coupling of thromboxane A2 receptor isoforms to Galpha13: effects on ligand binding and signalling.”. Biochim. Biophys. Acta 1450 (3): 288–96. DOI:10.1016/S0167-4889(99)00068-3. PMID 10395940. 
  • Windh RT, Lee MJ, Hla T, et al. (1999). „Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins.”. J. Biol. Chem. 274 (39): 27351–8. DOI:10.1074/jbc.274.39.27351. PMID 10488065. 
  • Brydon L, Roka F, Petit L, et al. (2000). „Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins.”. Mol. Endocrinol. 13 (12): 2025–38. DOI:10.1210/me.13.12.2025. PMID 10598579. 
  • Bhattacharyya R, Wedegaertner PB (2000). „Galpha 13 requires palmitoylation for plasma membrane localization, Rho-dependent signaling, and promotion of p115-RhoGEF membrane binding.”. J. Biol. Chem. 275 (20): 14992–9. DOI:10.1074/jbc.M000415200. PMID 10747909. 
  • Vaiskunaite R, Adarichev V, Furthmayr H, et al. (2000). „Conformational activation of radixin by G13 protein alpha subunit.”. J. Biol. Chem. 275 (34): 26206–12. DOI:10.1074/jbc.M001863200. PMID 10816569. 
  • Shi CS, Sinnarajah S, Cho H, et al. (2000). „G13alpha-mediated PYK2 activation. PYK2 is a mediator of G13alpha -induced serum response element-dependent transcription.”. J. Biol. Chem. 275 (32): 24470–6. DOI:10.1074/jbc.M908449199. PMID 10821841. 
  • Ponimaskin E, Behn H, Adarichev V, et al. (2000). „Acylation of Galpha(13) is important for its interaction with thrombin receptor, transforming activity and actin stress fiber formation.”. FEBS Lett. 478 (1-2): 173–7. DOI:10.1016/S0014-5793(00)01845-7. PMID 10922491. 
  • Jin S, Exton JH (2000). „Activation of RhoA by association of Galpha(13) with Dbl.”. Biochem. Biophys. Res. Commun. 277 (3): 718–21. DOI:10.1006/bbrc.2000.3744. PMID 11062019. 
  • Fukuhara S, Chikumi H, Gutkind JS (2000). „Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho.”. FEBS Lett. 485 (2-3): 183–8. DOI:10.1016/S0014-5793(00)02224-9. PMID 11094164. 
  • Meigs TE, Fields TA, McKee DD, Casey PJ (2001). „Interaction of Galpha 12 and Galpha 13 with the cytoplasmic domain of cadherin provides a mechanism for beta -catenin release.”. Proc. Natl. Acad. Sci. U.S.A. 98 (2): 519–24. DOI:10.1073/pnas.021350998. PMC 14619. PMID 11136230. 

Vidi još

  • p
  • r
  • u
PDB Galerija
1zcb: Kristalna struktura G alfa 13 u kompleksu sa GDP
1zcb: Kristalna struktura G alfa 13 u kompleksu sa GDP  
  • p
  • r
  • u
3.6.1
Pirofosfataza (Neorganska, Tiamin Apiraza  Tiamin trifosfataza
3.6.2
3.6.3-4: ATPaza
3.6.3
Cu++ (3.6.3.4)
Menkes/ATP7A  Vilson/ATP7B
Ca+ (3.6.3.8)
SERCA (ATP2A1, ATP2A2, ATP2A3)  Membrana plazme (ATP2B1, ATP2B2, ATP2B3, ATP2B4)  SPCA (ATP2C1, ATP2C2)
Na+/K+ (3.6.3.9)
ATP1A1  ATP1A2  ATP1A3  ATP1A4  ATP1B1  ATP1B2  ATP1B3  ATP1B4
H+/K+ (3.6.3.10)
ATP4A
Druge P-tip ATPaze
ATP8B1  ATP10A  ATP11B  ATP12A  ATP13A2  ATP13A3 
3.6.4
Dinein  Kinezin  Miozin
3.6.5: GTPaze
Gαs  Gαi (GNAI1, GNAI2, GNAI3 Gαq/11 (GNAQ, GNA11 Gα12/13 (GNA12, GNA13)  Transducin (GNAT1, GNAT2)
Ras  Rab (Rab27)  Arf (Arf6)  Ran  Rheb  Ro familija (RhoA, RhoB, CDC42, Rac1)  Rap
3.6.5.3: Protein-sintetišuće GTPaze
Prokariotski (IF-2, EF-Tu, EF-G Eukariotski
3.6.5.5-6: Polimerizacioni motori
B enzm: 1.1/2/3/4/5/6/7/8/10/11/13/14/15-18, 2.1/2/3/4/5/6/7/8, 2.7.10, 2.7.11-12, 3.1/2/3/4/5/6/7, 3.1.3.48, 3.4.21/22/23/24, 4.1/2/3/4/5/6, 5.1/2/3/4/99, 6.1-3/4/5-6