Inverterbar matris

Inom linjär algebra har en matris A egenskapen inverterbarhet eller invertibilitet, om och endast om det existerar en matris B sådan att

A B = B A = I   {\displaystyle \mathbf {AB} =\mathbf {BA} =\mathbf {I} \ }

där I är enhetsmatrisen. Då kallas A en inverterbar matris och B kallas inversen till A och skrivs A−1. Det följer av definitionen att både A och A−1 är kvadratiska matriser av samma dimension n×n. En kvadratisk matris som inte är inverterbar kallas för en singulär matris.

Ekvivalenta egenskaper

Att en n × n-matris A är inverterbar är ekvivalent med att:

  • Determinanten av A är nollskild, det A ≠ 0.
  • A har rang n.
  • Ekvationen Ax = 0 endast har den triviala lösningen x = 0. Med andra ord, nollrummet består endast av nollvektorn.
  • Transponatet AT är inverterbart.
  • Talet 0 är inte ett egenvärde till A.

Analytisk lösning

Transponering av en matris bestående av underdeterminanter (kofaktorer), kan vara ett effektivt sätt att beräkna inversen till små matriser, men denna rekursiva metod är ineffektiv för större matriser:

A 1 = 1 | A | C T = 1 | A | ( C 11 C 21 C n 1 C 12 C 22 C n 2 C 1 n C 2 n C n n ) {\displaystyle \mathbf {A} ^{-1}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\mathbf {C} ^{\mathrm {T} }={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}{\begin{pmatrix}\mathbf {C} _{11}&\mathbf {C} _{21}&\cdots &\mathbf {C} _{n1}\\\mathbf {C} _{12}&\mathbf {C} _{22}&\cdots &\mathbf {C} _{n2}\\\vdots &\vdots &\ddots &\vdots \\\mathbf {C} _{1n}&\mathbf {C} _{2n}&\cdots &\mathbf {C} _{nn}\\\end{pmatrix}}}

så att

( A 1 ) i j = 1 | A | ( C T ) i j = 1 | A | ( C j i ) {\displaystyle \left(\mathbf {A} ^{-1}\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} ^{\mathrm {T} }\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} _{ji}\right)}

där |A| är A:s determinant, C är matrisen av underdeterminanter och CT representerar den transponerade matrisen.

Invertering av 2 × 2 matriser

Invertering av dessa matriser kan göras enligt[1]

A 1 = [ a b c d ] 1 = 1 det A [ d b c a ] = 1 a d b c [ d b c a ] {\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b\\c&d\\\end{bmatrix}}^{-1}={\frac {1}{\det \mathbf {A} }}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}={\frac {1}{ad-bc}}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}}

Detta är möjligt därför att 1/(adbc) är det reciproka värdet av determinanten till A (som antas vara nollskild) och samma strategi kan användas för andra matrisstorlekar.

Cayley–Hamiltons sats anger att

A 1 = 1 det A [ ( tr A ) I A ] . {\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det \mathbf {A} }}\left[\left(\operatorname {tr} \mathbf {A} \right)\mathbf {I} -\mathbf {A} \right].}

Invertering av 3 × 3 matriser

En beräkningsmässigt effektiv metod för invertering av 3 × 3 matriser ges av

A 1 = [ a b c d e f g h i ] 1 = 1 det ( A ) [ A B C D E F G H I ] T = 1 det ( A ) [ A D G B E H C F I ] {\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\\\end{bmatrix}}^{-1}={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}\,A&\,B&\,C\\\,D&\,E&\,F\\\,G&\,H&\,I\\\end{bmatrix}}^{\mathrm {T} }={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}\,A&\,D&\,G\\\,B&\,E&\,H\\\,C&\,F&\,I\\\end{bmatrix}}}

(där skalären A inte skall förväxlas med matrisen A). Om determinanten är nollskild är matrisen inverterbar, där skalärerna (A, B, ...) ges av

A = ( e i f h ) D = ( b i c h ) G = ( b f c e ) B = ( d i f g ) E = ( a i c g ) H = ( a f c d ) C = ( d h e g ) F = ( a h b g ) I = ( a e b d ) {\displaystyle {\begin{matrix}A=(ei-fh)&D=-(bi-ch)&G=(bf-ce)\\B=-(di-fg)&E=(ai-cg)&H=-(af-cd)\\C=(dh-eg)&F=-(ah-bg)&I=(ae-bd)\\\end{matrix}}}

A:s determinant kan beräknas med hjälp av Sarrus regel:

det ( A ) = a A + b B + c C . {\displaystyle \det(\mathbf {A} )=aA+bB+cC.}

Cayley–Hamilton-uppdelningen ger

A 1 = 1 det ( A ) [ 1 2 ( ( tr A ) 2 tr A 2 ) I A tr A + A 2 ] . {\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\left[{\frac {1}{2}}\left((\operatorname {tr} \mathbf {A} )^{2}-\operatorname {tr} \mathbf {A} ^{2}\right)\mathbf {I} -\mathbf {A} \operatorname {tr} \mathbf {A} +\mathbf {A} ^{2}\right].}

Se även

  • Gausselimination - tillämpning av Gauss–Jordan för beräkning av invers

Referenser

Noter

  1. ^ Strang, Gilbert (2003). Introduction to linear algebra (3rd). SIAM. sid. 71. ISBN 0-9614088-9-8. https://books.google.com/books?id=Gv4pCVyoUVYC , Chapter 2, page 71


v  r
Linjär algebra
Grundläggande begrepp
Skalär · Vektor · Noll · Ortogonalitet · Ekvationssystem · Rum · Linjärkombination · Inre produkt · Oberoende · Bas · Radrum · Kolonnrum · Nollrum · Gram-Schimdt · Egenvärde · Hölje · Linjäritet
Bild på euklidiska rummet
Vektoralgebra
Matriser
Elementär · Block · Enhet · Determinant · Norm · Rang · Transformation · Rotation · Invers · Cramers regel · Trappstegsform · Spår · Transponat · Gausselimination · Symmetri · Addition
Multilinjär algebra
Geometrisk algebra · Yttre algebra · Bivektor · Multivektor · Tensor
Konstruktioner
Delrum · Dualrum · Funktionsrum · Kvotrum · Tensorprodukt
Numerik
Kategori Kategori